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I. INTRODUCTION 

The research grant NAG 1-500 entitled "Semiconductor Superlattice 

Photodetectors" was awarded to the University of Illinois at Urbana-Champaign 

by National Aeronautics and Space Administration-Langley Research Center 

on June 27, 1984. The grant was continued on July 1 ,  1985 and extended 

to December 31, 1986. Dr. Ivan Clark is the Technical Officer, and 

Mr. John F. Royal1 is the Grants Officer. 

This report is the final report. 

1. Period: 

June 1, 1984 to December 31, 1986 

2 .  Reporting Date: 

January 10, 1987. 

3. Technical Personnel: 

S .  L. Chuang Assistant Professor of Electrical and Computer 

Engineering 

J. J. Coleman Professor of Electrical and Computer Engineering 

K. Hess Professor of Electrical and Computer Engineering and 

Research Professor of Coordinated Science Laboratory 

J. P. Leburton Assistant Professor of Electrical and Computer 

Engineering and Research Assistant Professor of  

Coordinated Science Laboratory 

Two research assistants 
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11. TECHNICAL PROGRESS 

Superlattice photodetectors have been investigated during the past 

two and one-half years. We have studied a few major physical processes 

in the quantum-well heterostructures related to the photon detection and 

electron conduction mechanisms. namely, the impact ionization of hot 

electrons, the tunneling-assisted process, the field effect on the wave 

functions and the energy levels of the electrons, and the optical absorption 

with and without the phonon assistance. The results are summarized 

below. The details are reported in the appendix where reprints and 

preprints of papers supported by this grant are included. 

1. Superlattice photomultiplier 

Tunneling-assisted impact ionization across the conduction-band-edge 

discontinuity of a quantum-well heterostructure is investigated and applied 

to a new superlattice structure (Appendix A ) .  We consider multiquantum-well 

structures where the quantum-well regions are heavily doped and the 

undoped barrier regions are essentially insulating. Incident hot electrons 

due to the applied electric field perpendicular to the heterointerface 

interact with the two-dimensional electrons confined to the quantum wells 

through Coulomb force. The resultant electrons can either have enough 

energy to get out of the wells or  tunnel through the triangular barriers. A 

new analytical approximation for the impact ionization rate is given which 

compares favorably with numerical resu l t s .  The tunneling-assisted impact 

ionization rates and the ionization coefficients are calculated. It is 

shown that the tunneling effect reduces the ionization threshold and 

enhances the ionization rate significantly. Some experimental results of 
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this single-carrier type photomultiplier have been reported by Capasso's 

group at AT&T Bell Laboratories. 

We also carried out the variational calculations of subband eigenstates 

in an infinite quantum well with an applied electric field using Gram- 

Schmidt orthogonalized trial wave functions (Appendix B). The results 

agree very well with the exact numerical solutions even up to 1200 kV/cm. We 

also show that for increasing electric fields the energy of the ground 

state decreases, while that of higher subband states increases slightly 

up to 1000 kV/cm and then decreases for a well size of 100 A .  

We have also performed the exact numerical calculations for the energy 

level and the resonance width of quasibound states in a quantum well with 

an applied electric field (Quantum-well Stark Resonance) by solving the 

SchrGdinger equation directly (Appendix C) . This calculation gives both 

the resonance positions and widths for the complex eigenvalue E, -ir/2 of 

the system. Our theory also shows that the energy shifts of the ground 

states for the electrons and holes have the same behavior in high fields 

without any turnaround phenomenon, contrary to the results of Austin and 

Jaros. 

2 .  Superlattice Photodetector Based on the Real Space Transfer Mechanism 

We have investigated the free carrier absorption process of a superlattice 

photodetector which makes use of the real space transfer mechanism. In 

particular, we have formulated and numerically computed the free carrier 

absorption coefficient f o r  bulk GaAs in which we considered a second- 

order process involving both a photon and a phonon. Additionally, we 

carried out the computations f o r  the free carrier absorption coefficient 
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in a quantum well for the above cited second-order process involving a 

photon and a phonon. 

We also carried out new calculations for the electric field dependence 

of the intersubband optical absorption within the conduction band of a 

quantum well (Appendix D). We show that for  increasing electric field the 

absorption peak corresponding to the transition of states 1 + 2 is shifted 

higher in energy and the peak amplitude is increased. These features are 

different from those of the exciton absorption. It is also found that 

the forbidden transition for states 1 + 3 when F = 0 is possible when F 

is nonzero. These results are significant for applications to infrared photo- 

detectors and infrared lasers making use of the intersubband transitions 

in the quantum wells. 
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IV. PUBLICATIONS 

The following manuscripts submitted f o r  publication were supported 

either fully or partially by this Grant. The support by this Grant has 

been acknowledged in these manuscripts. 

1. S. L. Chuang and K. Hess, "Impact ionization across the conduction- 

band-edge discontinuity of quantum-well heterostructures," J. Appl. Phys., 

vol. 59, pp. 2885-2894, 1986. 

2 .  S. L. Chuang and K. Hess, "Impact ionization across the band-edge 

discontinuity for a superlattice photomultiplier," presented at the 1986 

Device Research Conference, Amherst, Massachusetts, June 21-23, 1986. 

3 .  S. L. Chuang, "Lateral shift of  an optical beam due to leaky surface- 

plasmon excitations," J .  Opt. SOC. Am., vol. 3, pp. 593-599, 1986. 
I 

4. S. L. Chuang and K. Hess, "Tunneling-assisted impact ionization for a 

superlattice," J .  Appl. Phys., to appear in February 1987. 

5 .  D. Ahn and S .  L. Chuang, "Variational calculations of subbands in a 

quantum well with uniform electric field: Gram-Schmidt orthogonalization 

approach," Appl. Phys. Lett., vol. 49, pp. 1430-1452, 1986. 
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Appendix A 

1 S. L. Chuang and K. Hess, "Tunneling-assisted impact ionization for a 
I , 
I superlattice," J. Appl. Phys., to appear in February 1987. 



ORIGII'TAE IS 
OF POOR WAUTV 

859703JAP 
I Tunnelipg-assisted impact ionization for a superlattice 

S:L. Chuang 

I 
Department of Electrical and Computer Engineering. University of Illinois at Urbana-Champaign, Urbana 
Illinois 61801 

Department of Electrical and Computer Engineering and Coordinated Science Laboratory, Univcniv of 
Illinois at Urbana-Champaign. Urbona Illinois 61801 

(Received 4 August 1986; accepted for publication 21 October 1986) 

Tunnelingassisted impact ionization across the conduction-band-edge discontinuity of 
quantum-well heterostructures is investigated and applied to a new superlattice structure. We 
consider multiquantum-well structures where the quantum-well regions are heavily doped and 
the undoped barrier regions are essentially insulating. Incident hot electrons due to the applied 
electric field perpendicular to the heterointerface interact with the two-dimensional electrons 
confined to the quantum wells through Coulomb force. The resultant electrons can either have 
enough energy to get out of the wells or tunnel through the triangular barriers. A new 
analytical approximation for the impact ionization rate is given which compares favorably with 
numerical results. The tunneling-assisted impact ionization rates and the ionization coelcients 
are calculated. It is shown that the tunneling effect reduces the ionization threshold and 
enhances the ionization rate significantly. 
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11. THEORY 
In this section, we present ( in  Set. 11 A)  an analytical 

approximation for the impact ionizatron of electrons con- 
fined to quantum wells excluding tunneling effects. We com- 
pared the results with those obtained by using a direct nu- 
merical approach from Ref. 8. We then include the tunneling 
effect in the impact ionization process in Sec. 11 B. 

A. Analytical approximation for the average impact 
ionization rate 

The total transition rate per unit volume Pt, between the 
incident hot electrons in the free states and the cold electrons 
confined to the quantum wells is given by’ 

where 
2a 
ti 

PEjkLj =-~(12]H,11’2’)/26(E, + E 2 - E ;  - E ; ) .  (2) 

The square of the matrix element ~(121iYx~l‘2’)~* due to 
Coulomb interactions has been calculated in Ref. 8 where 
the initial state consists of electron 1 in free state above the 
well and electron 2 in bound state inside the well. The final 
state consists of both electron 1’ and electron 2’ in fret states 
above the well. The average ionization rate ( l/r) is given by 
Eq. ( 2 5 )  of Ref. 8: 

2m:k, T. 

( 3 )  

where no is the concentration of the incident electrons, m: is 
the effective mass in the AlGaAs regon, and 

1 4ae4 L, d k2r 
- 7(Eo,) = T 3 (-i->‘ J (2a)2L, 

Xf(k,,)[S(k,,kL) +S(ki,k,)] . (4) 
The summation is over all the occupied subbands in the wells 
and Eo* is the energy of the incident electron measured from 
the conduction-band edge of the bamer region. All param- 
eters are defined as in Ref. 8. An effective well width L ,  is 
used to account for the finite bamer height.’ The integral 
S(k,,k2) due to the electron-electron interactions is defined 
as 

S(EI + E Z - E ;  - E ; )  
X 

[jk,-kk;/2+8]z k i - k , + k , - k ; ’  

( 5 )  
where the range of integration for k iZ is limited since both 
k iz and k t must be >k ;,, for electrons 1’ and 2’ to get out of 
wells if the tunneling effect is not included. The screening 
parameter 9 has been discussed in Ref. 8. The above integral 

I has also been evaluated numerically in Ref. 8 where k2 has 
both transverse component kZf and z-component 
f z(nlr/L,, ). We know that k,, is limited by the doping 

concentration which determines the Fermi energy EF in the 
wells, 

I 1 where n refers to the nth subband. The electron concentra- 

t where 

(7)  

(for EF - EQ,, ,k, TI is the electron concentration in the 
nth subband and E,, is the energy level of the nth subband. 
Since a, is the momentum of the incident hot electrons 
which is usually much larger than the momentum of the 

; electrons in the wells. and k, is essentially directed in the z 

I 
i 
! 
j 
/ 

FIG. 2. A momentum space diagram illustrating the range of integrations 
for k; . &cause of both energy and momentum conservation, the four wave 
vtctors k, .  k,. k; , and k; lie on a sphcncal surface in the momentum space 
assunung parabolic band struclures 
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direction, k l  = ik,, we thus assume ' servation, we integrate Eq. ( 5 )  analytically noting that 
6 ( E l + E 2 - E E ;  - E ; )  

(10) 

( 1 1 )  

= (m'/+?>6[ (k; - kl)*(k* - k; > ]  , 
S(kl,k,)=-S(kl2Ic, 1 t 

~4 i-') I and ignore the transverse components k,, in the integrand of 
the integral S(k, ,kz) .  Using the geometrical configuration 

' spherical surface' due to both energy and momentum cod- 

and making a change of variable 

we obtain 
1 shown in Fig. 2 in which k, ,  k,, k;, and k; lie on the Same 

I 

' = k; - k t  

0 

I 

I I 

traveling in the z direction only. The last integra over k, 

I 10 otherwise 
I 

I I !EO 

~ 

In the first case, the condition k, <k :,, < (k12 + k2, 112 cor- 
responds to the integral over the shaded region in Fig. 2. If 
the threshold value k :h is <k2,, the integral will be over the 
whole spherical surface* and results in the second Eq. ( 12b). 
The threshold wave number k;,, for electrons 1' and 2' is 

~ 

I ' given by 

which is larger than k ,  usually where the voltage drop 
across the quantum-well region is assumed to be zero since it 
IS heavily doped and ohmic contacted. Here rn; (or rn *) is 
the average effective mass in the GaAs region with the non- 
parabolic effect included.' Thus, the threshold energy of the 
incident hot electrons for impact ionization E,, measured 
from the conduction-band edge in the bamer region, is cal- 
culated from 

kl, = k i X  + k t - k,>2k :h - k, , (14) 

I E, = (#/2rn$2k;, - k,)2 - aEc . (15)  
A 

1 If one ignores k, 3: d L z 1  of the ground state, we have 
E, =3hEc. Thus, the threshold energy E, is in general 1 = 3A€, or less when k, is included. The integration over k,, ' is easily done using the distribution function f(k2, 1 in ( 6 )  ' and the fact that S(kl,k,)  is independent of k,,. 

IONIZATION 
RATE ( lhec)  

l O " 1  

I 1 (0 1 



grations' of multiple variables are shown in Fig. 3(b) for I T R A W M I S S ~ O N  

comparison. It is clear that our analytical approximations 
lead to very accurate results and eliminate the fluctuations 
due to numerical instabilities in the previous numerical inte- 
grations for all subbands as shown in Fig. 3(b). 

B. Tunnellng-assisted impact lonlzatlon 
The impact ionization of electrons in the wells which 

subsequently tunnel through the triangular barrier is calcu- 

:OEFFlClENTS 

0.8 - 
Numcrlcol 

Fowler - N o d h e l m  

I 
where T( E ; ) and T(E ) are the transmission coefficients 
through a triangular barrier with a barrier height Vo = A€', 
as shown in Fig. 4 at energies E ; and E i ,  respectively. The 
tunneling coefficient using the WKB method is given by" 

n ~ .  4. ne transmission coemcirnt for electron tunneling through a ;rim- 
guiar bamer with a height A&< = 0.254 eV. The solid curve is using the 
numerical approach with Airy functions and their derivatives. The dashed 
curve is from the WKB method. 

i 
T ( E )  = T ( E , )  4 J m - a  -4$% . 

. -  -?-- I 3 if tosl - -  
'a ( 1 Sa) 

- 
-f 

.\ if vo4 - 1 ,  (1Sb) 

(19) 
(20) 

where the effective mass difference between the well and the 
barrier regions has been ignored. If one includes the effective 
mass difference, the tunneling coefficient will be a function 
of both the longitudinal and the transverse energie~,''.'~ E, 

, and E,. The effect is small, however, since the effective mass 
! difference is small. A more accurate result for the tunneling 
i coefficient without any asymptotic expansion can be ob- 
I .tined by use of Airy f u n c t i o ~ ' ~ :  

VO 

4J(E, - vo) /E ,  . - . . - . 
' 

' 

(1  +$Z ) z - ' - - -  -f- 1 - - 

where 

t O = ( K F / e F ) ( v O - E r )  P 

irF = ( 2 m * e ~ / w 1 3 ,  

where 

k, = (2rn*E,/ti')"2 (22) 

where vo is defined in ( 19). Ai(vo) and Bi(vo) are the Airy 
functions, and Ai'( vo) and Bi'( vo) are their derivatives with 
respect to the arguments. A numerical comparison of the 
two results using ( 18) and (21 1 is shown in Fig. 4 for a 
bamer height V, = A€, = 0.254 eV. It is clear that the re- 
sults using the WKB method are good only if the condition 
Illo/ 1 is valid. For energies E, near the bamer height, 
which are important for our calculation of the tunneling- 
assisted impact ionization, the WKB method is not accurate 
since the prefactor in ( 18) goes to zero, while the more pre- 
cise result shows a smooth transition. If one sets the prefac- 
tor equal to one as done by other the dashed 
curve will shift to 1 at E = V,, and will deviate more from the 
solid C U N ~ ,  which is obtained from the exact numerical ap- 
proach, than the dashed line. Thus, we conclude that ( 2  1 ) 
should be used to incorporate the effect of the tunneling- 
assisted impact ionization. 

Since the tunneling.coefficient is a function of E, only, 

where T (  E ;, ) and T( E L ) are obtained from (21 and the 
range of integration is from k, to kl,, i.e., over the whole 
spherical surface in Fig. 2, instead of from k;,, to 
k,, + k, - k ;h since the tunneling effect is taken into ac- 
count in T ( E  i,) and T ( E t ) .  The previous calculations 
without tunneling correspond to 

( 2 4 )  

and a similar expression holds for T ( E  t 1. Thus, the results 
of impact ionization without tunneling will have threshold 
energies decided by ( 15), which are higher than that of the 
tunneling-assisted impact ionization since the transmission 



coefficient differs significantly from zero even if E i2 and 
EL<AEc.  

111. NUMERICAL RESULTS 
Various effects of multiple subbands, the quantum-well 

width L,, the band-cdge discontinuity Me, and the doping 
concentration have been discussed in Ref. 8. We have used 
the 60% rule for the conduction- and valance-bandtdge 
discontinuities." The validity of our new analytical approxi- 
mation in Eq. ( 12) has been presented in Fig. 3 (a) and com- 
pared with the direct numericai integrations shown in Fig. 
3(b) using Eq. (4). The results of the analytical formula in 
Fig. 3(a) do not show the fluctuations of the multiple nu- 
merical integrations in Fig. 3(b). 

In Fig. 5 ,  we show the ionization rate as a function of the 
incident electron energy E,, measured from the conduction- 
band edge of the barrier regon at the heterointerface with 
and without tunneling. The doping concentration No is 
1 x 10'' cm-' and only one subband is filled in this case. It 
can beseen that the threshold energy for impact ionization is 

' reduced significantly when tunneling is included. The ioni- 
zation rate is ais0 enhanced especially at the low-energy end. 
When the energy of the incident electron is very high, the 
tunnelings of the final electrons 1' and 2' are not important 
which is expected, since they all have enough energy to get 

I out of wells without tunneling assistance. In Fig. 6, we calcu- 
I late the ionization coefficient a for a doping concentration 
No = 7 x IOL8 cm-3 and assume the saturation velocity of 
the electrons u, = 1 x lo' cm/s. The ionization coefficient is 
obtained using a = ( l/r)/u,. The electron temperature T, 
versus the electric field Fis obtained from the average energy 
by a Monte Carlo simulation and is roughly, e.g., T, = 4630 

i K at F = 100 kV/cm; T, = 3860 K at F = 50 kV/cm; and I T, = 2300 K at F = 10 kV/cm. The multiplication factor 
1 M ,  for electrons as a function of the applied voltage Y for a 

multiple-quantum-well structure of 50 periods is shown in 
' Fig. 7. We assume a well size L, = 200 A, and a period 

I 

, IONIZATION 
, RATE (I/sccl 

0 Without Tunneling 

' IONIZATION 
COEFFICIENT (I/cm) 

Tunnelinq Asslstcd 
o o /  Impact Ionization I 

ENERGY OF INCIDENT ELECTRONS (cV1 

FIG. 5 The impact ionization rates [ 1 / ~ ( / & )  1 as functions of the incident 
electron energy with runneling-assisted procas (CirClcSJ and without tun- 
neling (crosses) are compared 

I I I .  I C  . i 102; I. 0 2.0 3 0  40 
I 

VELECTRIC FIELO (1 10-5cmIVI 
-. - 
tiu 6. Tie eiectron ionuation coeficicntr (I with ana without tunneling 
assistance VI the recipr&l of the electnc field are shown. 

1 L = 600 A. At this high-doping concentration, there are 
I four occupied subbands. The average effective mass mz 
1 = 0.09 1 mo for the GaAs region is used to take care of the 
1 effect of the nonparabolicity.* We havem: = 0.083 m, in the 
1 A12Gal -,As region assuming the A1 mole fraction 

x = 0.25. The conduction-band-edge discontinuity is AEc 
=0.187eV. 

All the calculations are done assuming T = 77 K since 
theconfinement of the carriers by the quantum wells will be 
.better at low temperature. This dynamic storage of carriers' 
in the quantum wells is very crucial in the design of this 
device. According to Eqs. (4) and ( 12). the impact ioniza- 
tion can also be written as 

M ~ l i  TIPLICATION 1 FACTOR 

I 

I I I 1 -  v 
i0 20 30 40 

I 
A P 0 ~ i E D  VOLTAGE ( V i  

FIG 7 The multiplication factor for electrons vs the applied voltage in a 
multiquantum-well structure with 50 penods is illusrrated above 



i.e., the impact ionization rate due to electrons in each sub- 
band of the quantum well is proportional to the electron 
concentration in that subband. This is true provided that 
S( k,,k,) =S( k,& ), Le., the transverse component k,, is 
negligible in the S integrals. To increase the ionization rate, 
one either increases hE, or increases L, to have more elec- 
trons N D  stored in the wells. However, larger AE, will in- 

i crease the threshold energy, and larger L, will decrease the 
energy of the confined electrons. Both tend to decrease the 
impact ionization rate. Thus, one needs to choose optimum 1 
Parametem for A&, L,, and doping COncentfation ND for 
best performance of the device. The multiplication factor for 
electrons is calculated from _. - . .-. 

found for electron-clectron interactions between the inti- 
dent free electrons and the bound two-dimensional electrons 
in the quantum wells. It is shown that the tunneling-asisted 
process lowers the threshold energy and enhances the ioniza- 
tion rate. The tunneling may increase the ionization coeffi- 
cient by a factor of 2 or 3 depending on the electric field 
strength and the size of the quantum wells. 
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We present variational calculations of subband eigenstata in an infinite quantum well with an 
applied electric field using Gram-Schmidt orthogonalized trial wave functions. The results 
agree very well with the exact numerical solutions even up to 1200 kV/cm. We also show that 
for increasing electric fields the energy of the ground state decreases, while that of higher 
subband states increases slightly up to IO00 kV/cm and then decreases for a well size of 100 A. 

Electronic as well as optical properties of quantum wells 
subject to external electric fields have received much atten- 
tion. '-'These areas are interesting both from a fundamental 

tions include the use of quantum confined Stark effect2 in 
optical modulators' and optical switching devices." As yet, 
most of the theoretical works has been confined to the calcu- 
lations of the ground state. Very recently, Matsuura and Ka- 
mizato7 reported an exact numerical calculation of subbands 
in an infinite well and concluded that the higher subbands 
behave very differently from that for the ground state when 
the electric field strength is incieased. Exact solutions em- 
ploying two independent Airy functions'.5 are sometimes 
too complicated to use in real problems. The variational ap- 
proach has the advantage of providing analytical expres- 
sions for the eigenstate energies and the wave functions, and 
numerical results with reasonable accuracy can be obtained. 
Analytic form of the trial wave function for the ground states 
has been known,'.' but no useful forms of the trial solutions 
for the higher subbands which yield accurate results com- 
pared with the exact ones are given yet. Recently, a trial 
wave function of the form f (z)exp( -Bcz) for the nth 
subband has been suggested,' where f (z) is the zero-field 
nth quantum well bound state wave function and 0, is a 
variational parameter. However, it is pointed out that the 
solutions may yield very different results from the exact ones 
(for n > 1 ) because these trial functions are not orthogonal 
to each other.' That observation is also confirmed in this 
paper and the numerical results are illustrated. Thus, it is 
important to find an orthogonalized set of trial wave func- 
tions for the variational calculations of subband energies and 
wave functions. 

We report in this letter variational calculations on sub- 
band states in an external uniform electric field based on the 
infinite well model. We find analytic forms of orthogona- 
lized trial wave functions by the Green-Schmidt orthogona- 
lization procedure. Our  calculations agree very well with 
exact numerical results up IO I200 kV/cm with an error less 
than 9% for L = 100 A. For comparison, we also show the 
numerical results for which the trial wave functions are not 
orthogonalized. 

It is well known that the variational method can also be 

and a praciicai point sf vie%. The wssibt: d ~ i c :  iipp!ica- 

used to obtain one of the higher energy levels if the function 
is orthogonal to the eigenfunctions of all the lower states." 
The most common method of obtaining an orthogonal set of 
Fmc;ims is the Grarr?-Schrr?idt r?rt!wgona!izatisn prwe- 
dure," which is the construction of an orthonormal set 
{+,&..) from a finite or an infinite independent set 
{ u i 4  2,...1 which is not necessarily orthonormal. 

Let us consider an electron with charge - le1 and effec- 
tive mass m*, in an infinite quantum well width L in the 
presence of a constant electric field F along the positive di- 
rection of the well z. We choose the origin to be at the center 
of the well. The Hamiltonian of the system in the effective 
mass approximation is given by'.' 

(1) 
whereH, is the unperturbed Hamiltonian whose eigenvalues 
are given by 

H = H, + lelFz, 

Eio)  - - (t i22/2m*L ' I n 2  n = 1,2, ... (2)  
For our specific problem, we chose the nth vector u ,  to be 

which is not an orthogonal set, wherep, is the nth variation- 
al parameter. One can easily see that for n = 1, u I is the trial 
solution introduced by Bastard er al.' We also define the 
inner product between two functions f and g, (f lg), by 

c i  
L / 2  

( f l & = /  f *(z)g(z)dz, (4)  
- L / 2  

where the superscript denotes a complex conjugate. 

n = 1, ( i )  Let df, = u ,  . (5a) 

( i i )  Minimize Ei (P i )  = (fi i ,H ~ f i l ) / ( d ~ i ~ d * i )  ,( 5b) 

The procedure we use is as follows: 

and find 6, 
(iii)d, = d:l/(d~iid,)i '2 . ( 5 c )  

n = 2, ( i )  Let 3, = u 2  - (u2 ;d I )d I  . (6a) 

( i i )  MinirnizeE1(&) = (tl,,jH !tb1)/(tb2itb2) ,(6b) 
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and findBI. 

This procedure requires mainly three inner products which are in analytical forms: 

and I 

The minimization of an analytical function and finding 
/3"'" can be directly done in the computer by calling some 
subroutines, e.g., using International Mathematical Statisti- 
cal Libraries (IMSL) subroutines. 

For the expectation value of the ground-state energy 
E, 1, we have 
El(&) = (4ll~l4Jl) 

=Elo)[(1 +$) 
( 1 1  

where the parameter F is defined by 

T =  le(FL /E , (12 
which turns out to be the normalized electric field.' 

In the low field limit, F4 1, 

and 
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Equations ( 11 )-( 16) have already been obtained by 
Bastard etal.' except they missed the factor of 1/2 in front of 
Bin Eq. (7) and the expressions for P ?"of Ref. 1 in the low 
and high field limits are not correct. This does not affect their 
final results for AE,, which are correct. Calculations of high- 
er energy levels are straightforward following the proce- 
dures in Eqs. ( 5 ) - (  7). The results of the normalized energy 
E ,  = E,, /E io) for the first three states are plotted versus the 
normalized electric field 3 in Fig. 1. The plot in terms of 
these two normalized parameters is universal which can be 
seen from the original Schrodinger wave equation.' It is 
readily seen that the shift of the subband energy due to the 
electric field is different between the n = 1 state and the 

~ ' 

higher energy states. For increasing electric fields, the 
ground state shows a large negative shift. whJe higher states 
have small positive shifts for fields up to F=2O and then 
negative shifts. We have also plotted t h z  subband energies 1 
obtained from the exact numerical wdut~on. We find tha: ~ 

both methods of calculation give ver! close results. even u p  
to T== 25. The parameters we use are m* = 0.065m,, and ' 
L = 100 A where m,, denotes the free-electron mass. = 10 
corresponds to 578.5 kV/cm for this L.  The results of calcu- 
lations employing unorthogonalized trial functions' defined 

I 
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FIG. 1. Normalized subband energies (Em = E./E 1'') are plotted vs the 
i i ~ ~ a & i ~ c ! e c : ~ c  stid (P=  fc1.r~ /E!"'!. ( 1  ! Theexact solution- (sol- 
id lines). (2)  the variational method with Gm-Schmidt ortho-- 
tion procedure -- (dashed lines). (3) the variational method (sec Ref. 5 )  
without orthogonalization . . . . .  (dotted lines). 

in Eq. (3) are plotted in Fig. 1 (dotted lines). One readily 
notices that these solutions begin deviating significantly 
from the exact ones at around F = 1.5 (F = 86.8 kV/cm for 
L = 100 A).  In Fig. 2 we plot the square of the wave func- 
tions \$I2 for the first three states when the electric field is 
F =  20. \$I2 is normalized to L. We see in Fig. 2 that the 
ground-state wave function is shifted to z < 0 region signifi- 
cantly, While higher subband wave functions still have a 
large amplitude in the z > 0 region even at F = 20. 

In conclusion, we have derived orthogonalized trial 
wave functions which yield very close results to those of the 
exact numerical solutions. It is shown that for decreasing 
electric fields the energy of the lowest subband decreases, 
while that of the higher subbands increases slightly up to 
F =  20 (FL lo00 kV/cm for L = 100 A). 
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FIG. 2. Magnitudes of the wave functions, L (r)I2, are plotted vs the 
nomuiizai disiiee zi'L b: :!i: ks: :h.= :&ba&. >-e &d linn are 
for the zero electric field. The solid lines M the exact solutions and the 
duhed lines are tbosc for the variational method with the Gram-Schmidt 
o n h o e i u t i o n  procedure for a quantum well witb an applied elstric 
field ( F s  20). 
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Exact calculations of quasibound states of an isolated quantum well with uniform electric field 
Quantum-well Stark resonance 

Electronic and optical properties of quaatum wells with 
:@k! :xter=a! :!tc..c;.c !!:!A; %re d h P h g  i!lk-ESL 
Studies of these arcas are important both from a fun&- 
m e n d  md a practid point of +. Optical moduhton' 
and optical switching devices' based on the quantum am- 
fined Stark effect have been suggested. Possible device a p  
plication# of the field-induced tunneling in quantum-well 
rad quantum-bamer heterortructures include high-speed 
resonant tunneliineg devices." 
More r e n t  theoretical studies'" of the effects of exter- 

n d  electric fields on the quantum-well aystcms have 

dependence of the carrier lifetime. In thh paper, we report 
exact numerical calculations on quasibound states of a 
quantum well in an external electric field (quantum-well 
Stark resonance) by solving the Schriidingcr equation for 
Stark resonance directly. It is found that the previous re- 
sults based on phase-shift ~nalysis '~ md the subi l i t ion 
method' agree very well with our results over a wide range 

predicted both the field-induced level Sbifta md the field 

- .- 

Pofmtid E- 

t "'*) 

of the electric field. At an extremely high electric field, 
there h nrr tu-m,rre!!Ed kh!wi@t L thc energy shitt for bt!l 
the electrons and the holes, contrary to the results in Ref. 
7, where no explaaatioa w k p d d  for that 
phenomenon. We believe that our dircct numerical a g  
proach is very reliable even at a very high electric field, 
while the resulta using the phue-shift analysis may have 
drawbacks in the high-fdd limit. Our approach has an 
8dV8ntPge Over the pmiour d t s ' - '  in that both the 
Stark resonance position (quasibound-state level) and the 
width can be obt.ind from the single complex energy 
eigenvalue of the quantum-well Stuk resonance problem. 
The disadvantage is that numerical subroutines of the Airy 
functions with compkx arguments are required. 

Consider an electron with charge - Ir I and effective 
mur ma, in a finite quantum well of width L and depth Yo 
in the presence of a constant electric field F along the posi- 
tive direaion of the well z (Fig. 1). We choose the origia 
to be at the center of the well. The Schriidiager equation 
of the system in the effective-mprr approximation is given 
by'$ 

FIG. 1. Potential-energy pmfrk VG) for i single quantum 
well Vitb depth VO md width L subject to M external electric 
field F. 

_ - -  - - - 

Since the potential energy term in Eq. (1) tends to -0 as 
rgouto - - , thes temdarnot,ttridyspcaking,haw 

confmd in a well can dwaya lower its potential energy by 
tunneling out of the well when the fEld is not zero. It may 
happen, however, that the tunneling probability is very 
small. In such case, we caa regard the system as having 
quasibound states, in which the particles move "inside the 
well" for a oonsiderable period of time and leave through 
tunneling only when a fairly long time interval t has 
elapsed. In discuuiag the quasibound statu, we may w 
the following formal method. Instead of considering the 
solutions of the Schriidinger equation with a boundary 
condition requiring the finiteness of the wave function at 

true bound stam.'*' r In other words, the particle initially 
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infinity, we shall look for solutions which represent outgo- 
ing waves at infinity;" this implies that the particle finally 
leaves the well by tunneling. Since such a boundary condi- 
tion is complex, we cannot wrt that the eigenvalues (en- 
ergy) must be d. By solving the Schriidinger equation, 
we obtain a set of complex eigenvalues, which we write in 
the form 

E -Eo-iT/2 , ( 2 )  

when  r is found to be positive. €0 and r correspond to 
the quasibound-state energy level and the resonance width, 
respectively. The tunneling probability per unit time ia de- 
fmed by 

0-m . (3) 

The solutions to Eq. (1) with the outgoing-wave condition 
arc linear combinations of two independent Airy func- 

I 

and 

The wave funktion for z < - L / 2  npresents an electron 
traveling to t - - - after tunneling. The complex energy 
E can k found by solving the secular equation obtained by 
matchins the value of q and its first derivative at the 
points, L = f Ll2 .  The resulting determinantal equation 
is 

where qlf and q? are the values of ql and q2 evaluated at 
t - L / 2  and - L i f  respectively. If we introduce a new 
parameter E"' defied by 

(7) 

(which happens to be the ground-state energy of an infi- 
nite quantum well with width L 1, and define the nonnal- 
@ energy E the normdid electric f*!d 
F=le lFL/€ 'o ) ,  and the normalized well depth YO 

- -Vd€'O', we may exp_rr?! qlf _and by thaz three 
normalired quantities: E, F, and Ye 

in 
(8a) 

~~ ~ ~ 

Thirprpr Phue-rbift Stabilizatioa 
F(kV/cm) (Cv) Mdytb ( C v )  mCtbod (Ov) 

75 . Eo 0.025167 0.025167 0.025 167 

100 Eo 0.0242107 0.0242105 0.0242106 
r i.86~10-* 1 . 9 ~  io-' 8 . 6 ~  io-' 

r 3 . 6 4 ~  io-' 3 . 6 ~  io-' 4.1 x io-' 

r 6.41 x 1 0 - ~  6 . 4 ~  io" 6 . 5 ~   IO-^ 
1% €0 0.021 371 6 0.021 381 6 0.021 170 

r 
This m w r  that the solution of from Eq. (6) ia universal 
and can be used for both electrons and bola with the re- 
placement of the p a m e t e r  €"' with their corresponding 
effective m a . '  (Here the efftctive masses inside and 
outside $e well arc assumed to k equal.) The normalized 
energy € can-k cxpr_tyed in t e r n  of only two normalized 
parameters, YO and F. Thus it is clear that both electrons 
and holes should have the m e  behaviors in their energy 
shift and the ~CIOLI;UIOC width. To obtain the results of Eo 

0 0 7 )o IO0 1 H )  a0 

LLECTRK FIELD (kvlurl 

FIG. 2. colnpuiroa of the ground-atrte energy d the vrrir- 
tiond &lath  (Ref& 13 lad 15) for infinite-well with rp- 
-ate cffbctivc-weU width (dashed line) .ad the red part of 
thc emru eigeovdue EO fnw exact dculrtioa (solid line) of 
tbu paper. 
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and r for holes, ooe o d  only multiply 2 by Eo using the 
effective m u r  of the hole. We ham s o i d  Eq. (6) oumer- 
i d l y  to the desired accuracy wing the series and asymp 
totic ex nsioar of the Airy fuoctioar with complex are- 

pared our results with those of the previous methods’.’ in 
Tabk I. The vducs of VO, L, and m* for the heavy hola 
rued io the calculatioar arc, rapcctively, 

men&’ PP To check the validity of our approach, wc com- 

Vo-lo0 meV, L -37 m* -0.45mo , (9) 

where mo is the fneclectroo mass. It is readily see0 that 
our raulu agmc very well with thome of the phue-shift 
oaalyrir’s and the stabilizatioo method8 

Io Fig. 2, the real put of the energy Eo kooancc 
pitioo-solid line) for the groundatrtc e a q y  with the 
valucr of VO, L, rad m* for electroar given by Vo-340 
meV, L -100 A, and m* =0.066~mo u compsd with the 
mults of infinite-weu variatiood cr lcu~at ioar~*~~ (dashed 
linea), where we have used an effective well width 
Lg-126.5 A, chose0 to give the same Eo at tcro field for 
the variational calculationr. It an be w i l y  aatiosd that 
both colculationr gave wry simil.r faults even up to 
2x I d  V/cm. Howmr, the v u i a t i o d  dculatioa for the 
infinite-well model cannot give the momce width r i m  
w tunneling exists for the infiiita well. The mulu of the 
normalired resoaan-a energy E ~ = E ~ E ”  for v u i o w  vo 
uc plotted wnua F in Fig. 3. Io am- to the pmioUr 
muits’ which are still cootrovcnirl, the r e s o a m  position 

is found to be in the well m o  at very high field. The 
behaviors of the mooant pcmitioa arc the same for botb 
electronr and hokr with proper E‘” used together with 
Fig. 3 u discus+ before. Thus the turnaround behavior 
for the hob and electronr in the energy shift shown in 
Ref. 7 is pmbably a drawback of that method itself. Using 
the same numerid v d u a  for holu as those in Ref. 7 
L-30 Yo170 meV, m0=0.45ma we obtain €(O$ 
-92.26 mcV, Yo-0.76. We do not have any turnaround 
behavior evco up to F- 10, or the electric field F -3075 
kV/cm. which coven a much wider range of electric field 
than that of Ref. 7. Io Ft. 4* we pl$ the _normalized reso- 

time I is defined by r-hR* the raults plotted in Fig. 4 
predict a rapid docnus of the carrier lifetime with in- 
crcuing applied f i i  by field enhanced tunneling 

In dus ioo ,  we have solved the Schrijdiogcr equation 
for 8 quaotum well With d o r m  clcctrk field directly. 
Complex eipovrlua for quantum-well Stark resonance 
ue obt.ined. Our approach hu an advantap over pmi-  
OUI mdyKI’” in that botb the mooancc pition and 
width c.0 be obuined from a single complex eigcnvdue of 
the problem. 

nmca width r =r/E(O) for v.rious vo vs F. si- the life- 

- - -  _ _  - - _- - 
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INTRASUBBAVD OPTICAL ABSORPTION I N  A QUANTUM WELL 
WITH APPLIED ELECTRIC FIELD 

D. Ahn and S. L. Chuang 

Department of Electr ical  and Computer Engineer ing 
Un ive r s i ty  of I l l i n o i s  a t  Urbana-Champaign 

Urbana, IL 61801 

Abstract  

We p resen t  new r e s u l t s  f o r  t he  e l e c t r i c  f i e l d  dependence of t h e  i n t r a -  

subband o p t i c a l  abso rp t ion  w i t h i n  the conduction band of a quantum w e l l .  

We show t h a t  f o r  i n c r e a s i n g  e lec t r ic  f i e l d  the  abso rp t ion  peak correspond- 

i n g  t o  the t r a n s i t i o n  of states 1 + 2 is s h i f t e d  h ighe r  i n  energy and t h e  

peak amplitude is increased.  These f ea tu res  are d i f f e r e n t  from those  of 

t h e  e x i t o n  absorpt ion.  It is a l s o  found t h a t  t h e  forbidden t r a n s i t i o n  f o r  

s t a t e s  1 + 3 when F = 0 is p o s s i b l e  when F is nonzero. 



2 

Quantum confinement of carriers i n  a semiconductor quantum w e l l  l e a d s  

t o  the  formation of d i s c r e t e  energy l e v e l s  and the d r a s t i c  change of o p t i -  

cal  absorption spectra.' The in t e rband  abso rp t ions  near  t h e  band gap have 

been extensively s t u d i e d ,  and i t  has  been shown t h a t  t h e i r  a b s o r p t i o n  and 

luminescence spectra are dominated by e x c i t o n i c  e f f e c t s .  2 *  

r ecen t  s t u d i e s  have concentrated on t h e  e lec t r ic  f i e l d  dependence of energy 

levels4-' and band edge o p t i c a l  abso rp t ion  inc lud ing  t h e  e x c i t o n  

e f f e c t .  '-lo 

Some more 

Very r e c e n t l y ,  t h e  experimental  s t u d i e s  of t h e  intrasubband 

absorpt ion w i t h i n  t h e  conduction band of a GaAs 

appl ied e l e c t r i c  f i e l d  have been reported". A 

and a narrow band width were observed. I n  t h i s  

t h e o r e t i c a l  c a l c u l a t i o n s  f o r  t h e  e l e c t r i c  f i e l d  

absorpt ion between the  d i s c r e t e  subbands w i t h i n  

quantum w e l l  w i thou t  t h e  

very l a r g e  d i p o l e  s t r e n g t h  

paper ,  we p resen t  t he  

dependence of t h e  o p t i c a l  

t he  conduction band of a 

quantum w e l l  based on t h e  i n f i n i t e  p o t e n t i a l  b a r r i e r  model. One of t h e  

reasons f o r  i nc reased  i n t e r e s t  i n  t h i s  area is  t he  p o s s i b i l i t y  of practical  

device a p p l i c a t i o n .  For example, i n  1970, Kazarinov and Suris"  proposed a 

new type of i n f r a r e d  laser a m p l i f i e r  u s ing  the  intrasubband t r a n s i t i o n  and 

resonant tunnel ing.  Far- infrared photodetector  with high wavelength selec- 

t i v i t y  based on t h e  intrasubband abso rp t ion  and t h e  s e q u e n t i a l  resonant  

tunneling has a l s o  been suggested.  13 

The Hamiltonian of t h e  system ( f o r  a s i n g l e  quantum w e l l )  s u b j e c t  t o  a 

uniform e l e c t r i c  f i e l d  pe rpend icu la r  t o  the  quantum w e l l  ( t h e  z -d i r ec t ion )  

i n  the  presence of an o p t i c a l  r a d i a t i o n  (Fig. 1 )  is w r i t t e n  as 
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1 

where H 

in the presence of perpendicular electric field, and the interaction 

Hamiltonian H’ i s  given by 
OP 

is the unperturbed Hamiltonian for an electron in the quantum well 
0 

14 

+ +  

+ + 
where h is  the vector potential, & is  the poiarizatioa Vector, a i d  q :s the 

wave vector for incoming optical radiation, e is the magnitude of the 

charge of the electron, m is the free space electron mass, and p i s  the 

momentum vector of the electron in the crystal. The first term in (2) 

gives the absorption, H , and the second term gives the emission of 
phot on. 

+ 
0 

’abs 
OP 

Then, for a given interaction potential H- the transition rate from 
OP’ 

14 the initial state &i to the final state g, for the absorption is given by 

where E and Ef are the energies of the electron in the initial state and 

the final state, respectively and w is the angular frequency of the inci- 
i 

dent photon. If we neglect the interaction between the electrons in the 

well, the wave functions for the initial state $i and the final state 

llf after absorption can be written as 15 



4 

and 

where A is the area of the well, L is the width of the well, kt, kt are the 

wave vectors of the electron in the x-y plane for the initial and the final 

states, respectively, r is the position vector in the x-y plane, and 

u 

tremum. 

+ 
t 

and ucI are the cell periodic functions near the conduction band ex- 
C 

The envelope functions 4i and bf satisfy the following 
Schrzdinger’s equation in the effective mass approximation, 5, 7 

and are given by the linear combination of two independent Airy functions 

Ai(n) acd Bi(q), where n is defined by 

In Eqs. ( 5 )  and (61,  m* and F denote the effective mass of an electron and 

the electric field, respectively. 

Zabs 
OP 

For intrasubband transitions, the matrix element <$f IH 1 lli> can 
16 be approximated by 



5 

where t h e  p o r t i o n  of t h e  ce l l  p e r i o d i c  funct ion has  been taken care of 

fol lowing ref. 16, and w e  have used t h e  dipole  approximation. Since 
L / 2  
-L/ 2 I b f *  (z) $i ( z )  dz = 6 f i  , w e  f i n d  tha t  t h e  major c o n t r i b u t i o n  t o  t h e  

+ 
o p t i c a l  ma t r ix  element i s  t h e  z-component of t h e  r vector .  So t h e  absorp- 

t i o n  i s  s t r o n g l y  p o l a r i z a t i o n  dependent. The abso rp t ion  constant  a i n  t h e  

w e l l  is defined,  as 17 

number of t r a n s i t i o n s  per u n i t  volume p e r  u n i t  time 
i n c i d e n t  power pe r  u n i t  area a =&I 

' t t  P b W f  i 

where t h e  summations over i and f are f o r  t he  quant ized i n i t i a l  and f i n a l  

ene rg ie s  r e s p e c t i v e l y  f o r  t he  z-components of the  momenta. I f  w e  c a l c u l a t e  

t h e  t o t a l  t r a n s i t i o n  r a t e  and t ake  i n t o  account t he  l i n e  broadening14, w e  

o b t a i n  
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2 
2 p cm*kgT e 

= - I 1  2 2  cos 8 l M f i  
i f  n t i  mOLnru 

wi th  t h e  ma t r ix  element 

( 2 )  where E f i  

l e v e l s  f o r  t he  i n i t i a l  s t a t e  and f i n a l  s ta te ,  r e s p e c t i v e l y ,  p is t h e  perme- 

a b i l i t y ,  c is the speed of l i g h t  i n  free space,  i s  t h e  Boltzmann 

constant ,  T is the  temperature,  8 i s  t h e  angle  between t h e  p o l a r i z a t i o n  

vec to r  and t h e  normal t o  t h e  quantum w e l l ,  nr i s  t h e  r e f r a c t i v e  index,  

% is the Fermi energy which depends on t h e  d e n s i t y  of e l e c t r o n s  i n  t h e  

w e l l ,  and r is t he  l i n e  width. 

ELz)- Ei , and Et" '  and E:"' denote t h e  quant ized energy 

11 The o s c i l l a t o r  s t r e n g t h  f is given by , 

In t h e  zero f i e l d  l i m i t ,  f - 14.45 f o r  t h e  1 + 2 t r a n s i t i o n ,  which i s  inde- 

pendent of the width of t he  w e l l  f o r  t h e  i n f i n i t e  p o t e n t i a l  wel l  model. 

The experimental resu l t  of f 

and s l i g h t l y  depends on t h e  w e l l  width. 

I I  
f o r  L = 65 A ( o r  Leff = 101.27 a)  i s  12.2 
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We c a l c u l a t e d  a f o r  t h e  f i r s t  t h r e e  s t a t e s  w i th  f i e l d  dependence 

numerically f o r  T = 300 K. I n  Fig. 2, we p lo t  t h e  abso rp t ion  c o e f f i c i e n t  a 

f o r  t h e  inc iden t  photon with p o l a r i z a t i o n  perpendicular  t o  t h e  w e l l  ( e  - 0) 
t ak ing  i n t o  account t h e  f i r s t  t h r e e  s t a t e s  as a f u n c t i o n  of t h e  energy of 

t h e  photon with F = 0 (dashed l i n e )  and F - 250 kV/cm ( s o l i d  l i n e )  f o r  an 

e f f e c t i v e  w e l l  width 101.27 4 ,  which gives  the  same ground s t a t e  energy f o r  

F 0 wi th  t h e  t rue  w e l l  width L = 65 4 and t h e  b a r r i e r  h e i g h t  A E ~  

meV.I1 We use E = 6.49 meV which corresponds t o  about 2.5 x 10 / c m  

e l e c t r o n s  and r = 10 meV from t h e  experimental  r e s u l t s * *  and is assumed t o  

be independent f o r  t h e  v a r i a t i o n  of F. One can e a s i l y  see t h a t  t h e  t ran-  

s i t i o n  1 + 2 is dominant f o r  both e l e c t r i c  f i e l d s  F = 0 and 250 kV/cm. For  

F = 250 kV/cm the  abso rp t ion  peak i s  s h i f t e d  by 16 meV from 165 meV t o  

181 meV and the  peak amplitude i s  increased from 315 3 cm 

There are two d i s t i n c t  f e a t u r e s  f o r  t h e  case of t h e  int tasubband abso rp t ion  

9 compared wi th  the  e x c i t o n  absorpt ion.  

245 

17 3 
1 1  F 

-1 t o  461 9 cm". 

( i )  The abso rp t ion  peak f o r  intrasubband o p t i c a l  a b s o r p t i o n  is 

inc reased  i n  energy with i n c r e a s i n g  e l e c t r i c  f i e l d  over  a wide range of t h e  

e l e c t r i c  f i e l d ,  because f o r  i n c r e a s i n g  e l e c t r i c  f i e l d s  the  energy of the 

ground s ta te  decreases  r a p i d l y ,  while  those of t h e  h ighe r  subband states 

increase s l i g h t l y  then dec rease  slowly a s  c i t e d  i n  Ref. 6 .  On t h e  o t h e r  

hand, f o r  t h e  exc i ton  abso rp t ion ,  both the ground s t a t e s  of t he  e l e c t r o n s  

and t h e  ho le s  decreases.  Thus the absorption peak i s  decreased i n  energy 

with i n c r e a s i n g  e lec t r ic  f i e l d .  

( t i )  The abso rp t ion  peak f o r  intrasubband o p t i c a l  a b s o r p t i o n  i 3  

increased i n  magnitude with i n c r e a s i n g  e l e c t r i c  f i e l d  because t h e  e l e c t r o n s  
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are s h i f t e d  t o  the  same s i d e  of t he  w e l l  f o r  both t h e  i n i t i a l  and the  f i n a l  

states with i n c r e a s i n g  e l e c t r i c  f i e l d ,  and the  energy d i f f e r e n c e  E2 - El 
a l s o  increases  f o r  t h e  reason mentioned i n  ( i ) .  As a r e s u l t ,  t h e  a b s o l u t e  

va lue  of t h e  ove r l ap  i n t e g r a l  M f i  f o r  1 + 2 t r a n s i t i o n  inc reases .  

f o r  the e x c i t o n  abso rp t ion ,  i n c r e a s i n g  e lec t r ic  f i e l d  causes  f u r t h e r  

While 

sepa ra t ion  of e l e c t r o n s  and h o l e s  i n  t h e  w e l l  and t h e  dec rease  of t h e  

energy d i f f e r e n c e  between t h e  e l e c t r o n  and the  ho le  ground states. 

t h e  decrease of t h e  a b s o l u t e  value of t he  ove r l ap  i n t e g r a l .  

Thus, 

4 

It is a l s o  remarkable t h a t  t he  forbidden t r a n s i t i o n  1 + 3 f o r  F = 0 

becomes poss ib l e  when F is nonzero because the p a r i t y  which p r o h i b i t s  t h e  

t r a n s i t i o n  1 + 3 no longer  e x i s t s  when F i s  nonzero. I n  Fig.  3 w e  p l o t  

(?f / M ( o ) ) 2  as a f u n c t i o n  of F f o r  t h e  1 + 2 t r a n s i t i o n ,  where MLi) i s  t h e  

value of Nfi  f o r  t h e  1 + 2 t r a n s i t i o n  with F 

expected t h a t  t h e  r a t i o  i n c r e a s e s  s l i g h t l y  from 1 as F increases. I n  our  

ca l cu la t ion ,  w e  assume r i s  cons t an t ,  however, t o  account f o r  t h e  e f f e c t  

of t h e  e l e c t r i c  f i e l d  on t h e  abso rp t ion  completely,  f u r t h e r  a n a l y s i s  of t h e  

e l e c t r i c  f i e l d  dependence of t h e  l i n e  broadening i s  des i r ed .  

f i  f i  

0. One can eas i ly  see as 

I n  conclusion,  w e  have c a l c u l a t e d  the  e lectr ic  f i e l d  dependence of t h e  

intrasubband abso rp t ion  w i t h i n  a conduction band of a quantum w e l l .  

found t h a t  t he  abso rp t ion  peak i s  s h i f t e d  i n  energy and is a l s o  inc reased  

i n  magnitude with i n c r e a s i n g  e lectr ic  f i e l d .  The fo rb idden  t r a n s i t i o n  

1 + 3 when F = 0 becomes al lowable f o r  t he  nonzero e lectr ic  f i e l d .  
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Figure  Captions 

Fig. 1. P o t e n t i a l  energy p r o f i l e  f o r  an i n f i n i t e  quantum w e l l  w i t h  width L 
s u b j e c t  t o  an e x t e r n a l  e lec t r ic  f i e l d  F i n  t h e  presence of 
incoming r a d i a t i o n  with angular  frequency Mu. 

Fig. 2. Comparison of t h e  intrasubband abso rp t ion  c o e f f i c i e n t  a f o r  i n f i -  
n i t e  w e l l  w i t h  L - 101.27 for t h e  f i r s t  t h r e e  s ta tes  wi th  

f i e l d  (dashed l i n e )  and f o r  t h e  e lec t r ic  f i e l d  of 250 kV/cm ( s o l i d  
l i n e  . 
The normalized ove r l ap  i n t e g r a l  IH21/M21 1 2 ,  where M~~ 
ze ro  e lectr ic  f i e l d ,  i s  p l o t t e d  ve r sus  e lectr ic  f i e l d  F. 

e l e c t r o n  d e n s i t y  2.5 x 101 4 /cm3 e l e c t r o n s  f o r  t h e  z e r o  e l ec t r i c  

(0) (0) Fig. 3. is f o r  the  
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\ A Coupled Mode Fomulation 

ORIGINAL: PA- Ls 
OF POOR WAUTYl 

by Reciprocity and a 

5 

Variational Principle 
SHUN-LIEN CHUANG, MEMBER, IEEE 

I. INTRODUCTION 
E COUPLED mode theory has been very useful in r the fields of integrated optics, semiconductor laser ar- 

;ays or microstrip coupled transmission lines. A “con- 
ventional” coupled mode theory usually makes use of a 
xmrbation theory to calculate the coupling coefficients 
11, [2]. It has been recognized that a simple power con- 

lavation argument for the powers in individual wave- 
uides leads to the fact that the two coupling coefficients t and Kbo are complex conjugate of each other, which 

is generally not m e  if the guides are not identical [3]. A 
more rigorous approach has been recently proposed and 
very good numerical results have also been presented t31- 
[5]. However, there is still considerable ambiguity about 
h e  reciprocity and the power conservation in the coupled 
mode theory. One knows that both the reciprocity nlation 
and the power conservation an the two basic laws which 

ust be obeyed and they are usually used in e l m m a g -  
etics as necessary conditions to check the numerical ac- 

curacy [6], [7] of the results. The reciprocity relation is 
applied to the fileds and is applicable to a lossy medium. 
,Thus, most results derived from the reciprocity relations 
\do not contain any complex conjugate quantities. If the 
lmedium is lossless, the complex conjugate of the permit- 
tivity e* equals to e itself, one then applies the conjugate 
fields to the reciprocity relation. On the other hand, the 
‘power conservation deals with the power and, thus, the 
complex conjugate quantities are usually used. 

I 
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astrins. university of Illinois at UrbarChamprign. U ~ M .  IL 61801. 

The goal of this paper is to present new coupled mode 
equations and analytical relations for the coupling coeffi- 
cients which follow the reciprocity theorem in a general 
lossy medium, and then the power conservation law if the 
medium becomes lossless. This new formulation removes 
the slight discrepancies of the power conservation en- 
countered in a previous theory presented in [31, [51. The 
analytical relation governing the coupling coefficients Kd 
and Kbo is derived from a reciprocity relation for the fields 
instead of the power conservation law for the intensity. 
Thus, it is also applicable to any lossy (or gain) wave- 
guide system. 

The general reciprocity relation and the derivation of 
the new coupled mode equations are presented in Section 
II-A. A variational principle for a general lossy or lossless 
medium is presented in Section II-B while a previous 
method is limited to a lossless system [8]. We show that 
our fonnulation using the variational principle is identical 
to that of the formulation based on the reciprocity rela- 
tion. In Section III, we derive the relation between the 
coupling coefficients and the propagation constants used 
in the coupled-mode equations. Note that this derivation 
is independent of the procedure in which one calculates 
those coupling coefficients and the propagation constants. 
We also show that the coupling coefficients and the prop 
agation constants derived in Section II-A and Section 
II-B for the coupled mode equations do satisfy the rcci- 
pmity nlation analytically. For a lossless case, the power 
conservation relation is derived from the reciprocity re- 
lation also. Finally, we present some numerical results 
and compare them with those of the previous theories. It 
is also demonstrated that an e m r  of 55 percent in the 
power conservation using a previous theory (21 can occur 
unless the overlap integrals C, are taken into account 
properly. An error of 0.033 percent occurs using the 
Hdy-Strcifer theory [3]-[5]. It is noted that the Hardy- 
Streifer theory, the theory of Haus et 41. [SI, and the 
present one give numerical results almost indistinguisha- 
ble on the plots of propagation constants and coupling 
coefficients for the examples considered so far, although 
slight differences exist among the three theories. 

II. FORMULATION 
A. Coupled Mode Theory ftom a Generalized 
Reciprocity Theorem 

In this section, we present a “generalized” reciprocity 
theorem for two sets of solutions (E“’, H“’) and (E”’, 

0733-8724/87/0105SOl.00 O 1987 IEEE 
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H'*') to Maxwell's equations in nvo media e(') and d2) re- 
spectively. Based on the generalized reci rocity theorem, 

responding field solutions, two exact relations for the con- 
ventional coupling coefficients Kob and Kh for two wave- 
guides a and b can be derived in Cases A1 and A2. We 
then derive the coupled-mode equations in Cases A3 and 
A4. A different approach using the variational principle 
for waveguide systems will be presented in Section 11-B, 
and identical results of the two approaches are also illus- 
trated. 

1. A Generalized Reciprocity Theorem for Two Media 
t(')fx, y) and e(')fx, y): Consider the first two Maxwell's 
equations in a medium dl)(x, y) 

we show by choosing various &I)  and c( P I, and their cor- 

where the fields (E( ' ) ,  H")) satisfy all the Maxwell's qua- 
tions and the boundary conditions in the medium d ' ) (~,  
y). For a different medium ~( ' ' (x ,  y). the fields (E''), H(2))  
satisfy a similar set of equations and also the boundary 
conditions in e('). Following similar procedures for the 
Lorentz reciprocity theorem, we obtain 

If we apply the above relation to an infinitesimal section 
Az of a cylindrical geometxy which is translational in- 
variant in the z dimtion, we obtain 

(3) 
where the divergence theorem has been used. A similar 
equation using the polarization vqtor has been derived 
before [I]. However, our inteipntation using e(') and e(') 
instead of the polarization vector is slightly diffennt and 
will be shown to be very useful. We note that the above 
relations are auct  as long as the fields (E(') ,  H")) satisfy 
the Maxwell equations and all the boundary conditions in 
the medium &)(x, y )  and (E(2),  H")) in the medium 8'')(x, 
y), respectively. The above reciprocity relation is appli- 
cable to any two reciprocal media and is exact, while most 
reciprocity relations arc applied to only one reciprocal 
medium with a polarization vector introduced and a p  
proximated using a perturbation approach. The advantage 
of using the above exact relation will be shown in the next 
few cases when applied to a coupled-waveguide system. 
The time convention exp ( - jot)  will be adopted in this 
paper. 

Case AI:  We choose first 

Fig. 1. Schemaric diagruru for vrnws medii under consideration: (I) 
P ' ( x ,  y )  wicb I single waveguide u. (b) e'*'(x, y )  with a single wavcguik 
b. (c) c(x. y )  with both waveguides u lad b. 

and 



and 

which are defined almost identically to those used in [3] 
except a constant factor of 4. The choice of the back- 

sen to be the coupled wavepide system (Fig. l(c)) for 
convenience. One notes that Kw’s arc the “conventional” 

1 coupling coefficients except for the z components in the 
’ last term of the integrand [2]. Note !.hat Equation (8) is 
an exact relation as long as the field solutions for each 

g m o d  @, y) is not U?iq??C (i?? gentd). Et=, it is c!m 

, w m v - m . ; ~ -  r . r c t r m  .*\ s m ~  * @ ) t w  w\ awwt Fnr s 

, siao wavcguiae structure, ~ I C  CXWK soiuuons arc m w n  
’ and the identity (3 can also be proved analytically since 
i all the quantities Kpq and cm can be derived. That proof 
I is mathematically laborious but straightforward, and will 
not be shown here. Equation (8) is also a very useful n- ’ lation in checking the numerical accuracies of the “COU- 

[piing coefficients” in the computer program. one sees 
I clearly that in general xh # E, when f i b  # 6,. Equation 
(8) shows the precise relation that the difference between 

I the coupling coefficients is equal to the difference between 
the two propagation constants multiplied by the average 
‘of the overlap integrals C, and Ch. In the limit of ex- 
- tremely weak coupling C,, Ch << 1, we have xb = 
Kd, which is the reciprocity relation under the very weak 

~ coupling condition in a conventional analysis. 
1 CaseA2: Wechoose 

I €(I)(& y) = tQ’(x, y )  (12) 
~ ~ ( 1 )  = @a)+(x, y )  e’&z (13a) 

1 “1) = p)+(x, y )  eiB.2 ( 1 3 ~  

where 

and 

Note from (9): 

(If only TE modes arc excited, we have EiP) = 0, p = u, 
b; thus, E& = 0. Quations (8) and (16) will lead to Ch& 
= c&&.) In general, relations between %& and Pi, or 
K L  and can also be derived from (8) and (16). In the 
Wowing cases, we apply the reciprocity relation to the 
coupied waveguae medium e@, yj  as shown in Fig. i(c), 
and derive the new coupled mode equations. 

Cart A3: We choose 

t“’(X, Y) = d x ,  Y) (18) 

and 
El” = u(i9 EY’+(x, y )  + b(z) Ejb)+(x, y) 

Bj” 1: u(z) H?’+(X. y) + b(r) Hlb)+(x, y) 

(19a) 

(19b) 

for the transverse components. The above relations are 
just the modal expansions in terms of the two guided 
modes in waveguides u and b. We also note that the above 
expansion is only an approximate set of solutions to the 
Maxwell equations in the coupled-waveguide medium e(x, 
y) and the radiation mode has b a n  neglected. Both wave- 
guides u and b are assumed to support only a single TE 
(or TM) mode. The extension to a multiple mode wave- 
guide is straightforward by including a summation over 
all the guided modes in each waveguide. The longitudinal 
components of the fields follow from Maxwell’s equa- 
tions for the waveguides 

H:’) = a(z)Hf’(x, y) + b(r)Ht6’(x, y). (20b) 

A derivation of the above two components in (20a) and 
(20b) is given in Appendix A. A similar relation has been 
given for the z-component of the polarization vector in 
[l], and used in [3)-[S]. The factors e(‘)/e and 8 “ l e  in 
(2Oa) have been ignored in [8]. We think they should be 
kept for consistency with the Maxwell equations as shown 
in Appendix A. 
For the second set of solutions, we choose the medium 

for a single waveguide u 

P ( X ,  y)  = P ( x ,  y) (21) 
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and the guided mode solutions in the -2 direction where the matrix elements for F and S are 

- - c, + c, C’ = c, = 
2 

We obtain from (3) where 

where and when C‘ and Rm are defined in (IO) and (24). n- 
spctively, and (26) has been used in (32). We note that 

is sym- 
metric. The matrix S, is obviously symmetric following 

€@) 

e 
Rw = 11 Ae‘q’(E?’ - E:’’ - - E,e‘E!9’) & dy. = cn = CII = C22 = 1, and the matrix 

4 

(24) (32). 
Let 

To keep the same convention as in zM, the order p, q for 

the same relation (8) as E,,, by observing that 

the definition of Rw is reversed from that in [3], and for 
later use. It is straightforward to show that Rp( satisfies 

2:s cab + c, 
2 .  

w e  invert the matrix C and obtain the coupled mode 

do - = i yaa  + iKabb (33,) dz 
db - = iybb + iKha (33W dz 

A e@) CqUatiOnS Rpp = E‘ + 5 Ad9) - E,@’Ei9’ & riy (25) 
c 

where the second term is symmeaical when we exchange 

(26) 

p and q. Thus. 
- - Rw = Km - 4 (C, + C,>(Bp - 6,) 

which arc exact nlations. 
Case A4: We choose 

cob + Cbn W z )  db(r) +- when the first form in each quation is to compare with 
that in [3], and the second form is simplified after making 
use of (26) or (32b). One should know that although the 
maaices C and s are both symmetric, C-’S is not sym- 
metric in general. That is, Kd # K,, unless we have two + Rab 42) + it@, + Rbb) b(2). 

identical waveguides. This does not violate the rcciproc- 
(29) ity theorem or the power conservation law as will be p n -  

2. Coupled Mode Equan‘ons: Based on the results in sented rigorously later. 

Applicable to a Lossy Medium 

- 
2 dz dr 

1 = i ( @ b  cab + cba 

Cases A3 and A49 we Obtain the COUP14 mode 4 ~ t h l S  B. Coupled Mode %ory From a Variational Principle 

Variational principle has bem widely used to study the 
resonators, the waveguides or scattering from objects [9],  
[IO]. A general variational formula for the propagation 

(3) 
e - [  d d2) ] = i s [ ’ ; ]  

dz b(2) 
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y of the coupled waveguide system ~ ( x .  y )  can to be (Appendix A): 

(424 

V, x E' - i w p H +  = -iy? x E +  (35a) H,f = a:@")* + a2fHib)f (42b) 
when a:, %+ are, in general, independent of a; and 02'. 
me variational fornula can tie put in a quotient of two 

derived from two oppositely traveling modes of the (4 (b) 
E: = a: f, ~ j p "  + a t  t E!~)*  

lystem e e 

I V, X E' - iop" = iyf x E' (3b) quadratic f o m  
(35b) V, X H' + i d +  = -iyt x H+ 

Q,a;ad 

Po4 Q 
( 3 6 )  7 = y m  (43) 

V, x H- + iwE' = i y t  x H-. 

t multiplying (35a) by H' and (35b) by E', and add- P. Q 

hg the results, we obtain 

N 
D 

i -  

bhen N and D denote, respectively, the numerator and 
he denominator in (37). A similar form to (37) has been 

kc., in the denominator which will be shown to be nec- 
tssary in the following case. 
1 It is straightforward to show that (37) is a variational 
bmula for the propagation constant y by taking the first 
piation in y, by, from the trial fields 

jerived in 181, [10]-[12], except that we k a p  H-, E+, 

H* = hof + 6H' (38b) 

when Eof and Hof are assumed to be the exact solutions. 
h a t  is, using (35) and (36) for E,$ Hofand yo, one finds 

(39) 

here NO and Do a n  the expressions in (37) evaluated c ing Eof and Ht. Thus any deviations of first order in 
PE * and 6H * only result in errors of second order (&E *)2 
kad in y. 
~ We choose the trial functions to be 

E: = alfE?+ + (-1 
€3: = a:Hj")+ + a2+Hib)+ 

lor the transverse components of the fields propagating in 
he +z direction. Here the subscript 1 refers to a, or 
waveguide a, and 2 forb for convenience. We also choose 

I E; = a;Ep'- + (41a) 

H; f: a; HI"'' + a i  Hib'- (4 ib) 

1 

for the transverse components of the fields propagating in 
the -2 direction. The longitudinal components 8n found 

(37) 

where p, q = 1, 2 or a, b in a two-waveguide system. 
The mtrix elements E, am defined as (31). The deriva- 
tion of the matrix elements QM's is more complicated and 
is given by 

. f i c r  

when various relations such as those in Appendix A have 
bein used. Using some vector identity and integration by 
parts for the last term in (44): 

We simplify QM 

= a. + zHBq 
= s,. 

Thus it is clear that QpQ is identical to S,. 
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The propagation constant y of the supermode is deter- 
mined from the variational formula (37). We thus take the 
partial derivative with respect to a i  regarding the ampli- 
tudes of the positive traveling waves 04‘ to be independent 
of u; 
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and obtain 

(47) 

where we have made use of (43) again. 
Noting that 

d 
z ir 

for the system mode, we obtain the coupled-mode equa- 
tion 

(49) 

which is identical to the coupled-mode quation (30) de- 
rived in Section 11-A since Q = S. If one takes partial 
derivative with respect to a: in (47), one obtains identical 
results as (49) since both and Q arc symmetric. 

III. RECIPROCITY AND Pow= CONSERVATION 
Almost all the previous theories use the power conser- 

vation to find the relation between the two coupling coef- 
ficients Kob and Kbo. That would lead to enantous results 
since Kob # K&, in general, if two waveguides are not 
identical. An approximate thmy from a more rigorous 
approach indicates some clue to the reciprocity relation 
by a power conservation argument but the results still 
contain some small discrepancies [3]. The explanation 
given in 131 was that they arc due to the neglect of the 
radiation modes. In this section, we show that reciprocal 
relations can indeed be satisfied unuZyticu11y and the pre- 
cise analytical relation of K d  to Kbo caa be obtained, and 
the radiation field can be ignored from the beginning. The 
relation derived here should be obeyed and our coupled 
mode theory does satisfy this analytical relation. 

A. Reciprocity Rekatiom 
Let us apply the reciprocity dat ion (2) to the two 

waveguide system described by e(%, y) (Fig. 2). We 
choose e‘’’(%, y) = &, y) = c(x, y), and the two sets 
of solutions 

( s a )  

(5ob) 

Ej” = u‘”(z) El“’+(%, y) + b‘”(z) El6’+(& y) 

Hj” = U‘l’(Z) Hl“’+(%, y )  + b‘”(z) H:b”(%, y)  

and 
Ef’ = U ( ~ ’ ( Z )  El“’-(%, y) + bQ’(t) Elb’-@, Y) 

Hy’ = u”(z) Hl“”(x, y) + b”(z) ~!”’-(%, Y )  

(51a) 

(51b) 

1 a - l  I a i0 9 z  

Fig. 2. TWO paallel dielectric waveguides applied to the reciprocity re- 
lation. The surfaces SI and & uc n o d  to the t-direction. The side 
surface S, expands to inhnity. The two scu of rolutiom used a: 1) 
a(‘)( - I )  = 0, b“’( -1) = V,. a(’)(O) = quation (5%). b(”(0) - equation 
(55b). 2) a(’)(-1) - equation (a). b( ( - I )  = equation (6Ob). dz)(0) 
* U,. b”’(0) - 0. 

for the transverse components where the radiation mode 
has been neglected. 

The volume of integration is chosen to be bound by SI, 
&, and S, as shown in Fig. 2. Using the divergence theo- 
rem and the fact that the surface integral on the side S, 
goes to zero because of the radiation condition, we obtain 

j j (E? x H?’ - E?’ x * e dr dy 
2 - 4  
SI 

= 11 (E!1) x Hy) - Ef) x HI’)) * 2 dr dy (52) 
2 - 0  
S2 

which leads to 

(53) 

We next consider these two sets of solutions to be the 
cbupled mode quations with two boundary conditions 
satisfied respectively. One starts at z = -I with the 
boundary conditions 
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-md the solutions of the mode amplitudes when propagat- 

when 

The next set of solutions arc the propagating modes in 
-t dirccuon with the boundary conditions 

.O)(O) = u, (59a) 

b@)(O) = 0 (59W 
the solutions when the mode propagates to z = - I  

A 
an)( - / )  = uo cos $1 - i - sin PJ (609) 

J, 

(6ob) 

tituting these field amplitudes (54). (55) .  (59), and 
into the reciprocal relation (53). we obtain immedi- 

Kb - Kd = A(Cd + C& (61) 

hich is the reciprocal relation that must be obeyed. Note 
at the above relation is exact and there is no complex 

fonjugate operation involved hen. It is appliqble to lossy 
1s well as lossless systems. Each quantity in (61) can be 
iomplex in general. Using our theory as derived in Sec- 
Ion II, the quantities given by (34a)-(34d) do indeed sat- 
FfY the above reciprocal relation (61) analytically! The 
/roof IS straightforward by substitutions and making use 
!f (26) for & and td. Interestingly, the above relation 
61) is of the same form as (26) except that the propaga- 
ion constants an the modified 7, and ’Yb instead of 8, and 
lb for individual waveguides. 

[ 
iKh 

= U, 7 sin $le’6‘. 

I. Power Conservations 

We choose the first set of solutions to be 

E ? k  Y) = a(z) Ey’+(x, y )  + b(z) Elb’+(x, y)  (62a) 

R!”(J, Y) = a(z) Hl“”(x, y) + b(z) Hlb’+(x, y)  (62b) 

For the second set of solutions, we choose e”)(x, y )  = 
*(I, y). Since the medium is lossless, e* = e, the com- 

or e(% y) = e(x, y). 

Fig. 3. (a) @) (c) An illustntive example to show the two coupled wave- 
guides uader consideration. Them also exists an external perturbation 
b e e n  the two waveguides. 

plex conjugate fields are also solutions. We choose 

making use of the z-inversion symmetry also. Substituting 
(62) and (63) into (521, we obtain 

P(z = -1 )  = f ( z  = 0) 

turns out to be the power guided by the two waveguides, 
when we have used relations such as 

C, = 4 11 Eib) x HI“) - e & &  

= 4 11 Elb) x HP)* - f & dy (65) 

for a lossless system assuming one chooses E, and H, to 
be real, which is possible [13]. We note that since the 
distance 2 between the two surfaces S, and S2 is arbitrary, 
(Ma) leads to the fact that P(z) should be constant inde- 
pendent of z, which is also obvious from the power con- 
servation point of view. Using the boundary conditions 
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16 18 20 12 14 

WAVEGUIM THICKNESS ( p m )  

(a) 

Thus the "power conservation violation factor" for ex- 
citation in waveguide b at z = 0 
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COUPLING 
COEFFICIENTS 

( I I p m )  

ORIGXNAG PAGE IS 
OF POOR QUALITY 

.07 t 

I I I I 1 
.*" .:: I7 .i6 .i8 , 2G ,I 

WAVEGUIDE THICKNESS (pm) I (a) 

COUPLING 
COEFFICIENTS 

LICml 

0003 

I 1 16 18 

20 14 I2 O IO 
I 

WAVEGUIM THICKNESS (Clrnt I 
(b) 

Fg. 5. (a) "be ml puts. lad @) tbc imrginuy puta of tbc mupiing coef- 
fichu K., red KI. for the waveguide ayrtem in Fig. 3 M ploaed venua 
the chicbaa  (pm) of waveguide b. Our rcrulu (dubed lines) and the 
remits wins [3] (dotted l h )  UT on top of uch other. The cn#w arc 
the d t 8  uia8 [21. 

phould be zero. One sees c l d y  that this condition has tor F is an indication of the power conservation and the 
ban derived in the previous d o n  using the reciprocity reciprocity relation. It can be used for the final numerical 
theorem which is more gene& for lossy as well as loss- check of the consistency of the theory. Similarly, for an 
legs cases. In deriving (67), one n& to restrict every initial excitation in waveguide u at t = 0, one can define 
quantity in (67) to be rtal for a lossless medium. Our new another factor 
formulation presented in the previous sections does sat- 
kfy eMctly these reciprocity conditions and power con- 

-tities in (34a)-(34d) into (67) and use (26). The fac- 
Kbn pervation, since the factor F is zero if we substitute all Fo-b = -js [(& - &) - A(cd + CAI (68) 
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shown using the righi r d c .  

to check the numerical accuracy. The numerical results of 
these two factors in (67) and (68) using various methods 
will be presented in the next section. 

IV. NUMERICAL RESULTS AND DISCUSSIONS 

In this section, we consider an example from 131. The 
coupled mode equations (33a) and (33b) with the expres- 
sions in (34a)-(34d) are used in the numerical calcula- 
tions in this paper. The refractive index profile is shown 
in Fig. 3 where an external perturbation between the two 
planar waveguides also exists. We choose the index vari- 
ation to be along the x direction, and for TE polarized 
waves, the electric field has only the y-component. The 
refractive indices are nl -- ns = Re (n3) = 3.4, n2 = n4 
= 3.6 and an additional loss exists between two guides 
such that n: - n: = il. 299 x The other parameters 
are r2 = 0.15 pm, f3  = 0.4 pm, A = 0.8 pm, and 24 varies 
from 0.1 pm to 0.2 pm. The numerical results using an 
exact root-searching approach have also been shown as 
the solid lines in Fig. 4(a) and 4(b) for the red and imag- 
inary parts of the propagation constants. (In [3], the “ex- 
act” numerical method combines a root searching a p  
proach assuming a lossless system to find the real parts of 
the propagation constants, and a perturbational approach 
for the imaginary parts when the loss is added. The final 
“exact” mulu in [3] are indeed very good compared with 
our exact root searching approach.) The results of the the- 
ory in this paper arc shown as the dashed lines, and the 
results using that in [3] are shown as the dotted lines. We 
see clearly that all three methods agree very well with 
each other. The results of a conventional method [2] are 
also shown as the crosses which deviate more from the 
exact solutions especially for the imaginary parts of the 
propagation constants. 

In Fig. Z(a) and 5(b) we compare both the real and the 
imaginary pans of the coupling coefficients using our 
method and the methods in [2] and [3]. It is clear that our 
results do agree very well with those using the method in 
[3] with a different approach, which has k e n  checked with 
the “exact” numerical results presented in 131. We note 
that our results satisfy the reciprocity and power conser- 
vation analytically and, thus, the factors F b - .  and F a - b  
in (67) and (68) are zero while the Fs of the method in 
[3] still contain a smaU discrepancy which is around 0.033 
percent at a maximum value at r4 = 0.1 pm, and the Fs 
of the method in [2] yield a maximum power discrepancy 
of 55 percent at r4 = 0.1 pm (instead of only about 20 
percent as claimed in (31). Detailed calculations of the 
two power conservation violation factors are shown in 
Fig. 6 (assuming the lossless case, Le., Im [n: - n:] = 

(the dotted lines) in the left scale. The results are within 
0.033 percent. The results using [2] (crosses) show in the 
right scale that F a 4 b  for excitation in waveguide a has an 
e m r  of power conservation of 21 percent at t4 = 0.1 pm, 
and Fb for excitation in waveguide b has a value of 55 

arc always zero or within the round of€ errors in the com- 
puter, and the power conservation is indeed satisfied. 

One should also note that the relations using the reci- 
procity and power conservation laws are necessary con- 
ditions, not sufficient conditions, for the accuracy of the 
numerical results 171. They usually serve as checks, not 
direct proofs, of the numerical solutions to the Maxwell 
equations, 

V. CONCLUSIONS 
A new coupled mode fonnulation has been described 

via two methods: a generalized reciprocity relation and a 

0) when F b - o  and Fa-.b for the method in [3] art shown 

PCrCent. &r E S d t s  (the dashed line) for Fb -. ,, and Fa b 



pared with the exact solutions and a previous method [3] 
which contains a slight discrepancy show that our new 
formulation should be very useful and self-consistent. We 

which is (2Oa) itl the text. A similar procedure can be 
applied to Hz and leads to (2Ob). 
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A Coupled-Mode Theory for Multiwaveguide 
Systems Satisfying the Reciprocity Theorem 

and Power Conservation 
SHUN-LIEN CHUANG 

Absrmcf-Two sets of coupled-mode quations for multiwaveguide 
systems a n  derived us* 8 g e n e d i e d  reciprocity relation; one set 
for a lossleas system and the other for a general lossy or lossless system. 
The second set of equations also reduces to those of the Brst set in tbe 
lorrkss case under the condition that the transverse &Id components 
are chosen to be red. 

Anslytical relations between the coupling cocWicnts are & o m  and 
applied to the coupling of mode quatiolu. It b sbom analytkally that 
our d t s  satisfy exactly both the reciprocity thcorem & power con- 
servation. New ortbogolurl relations between tbe supermodrr are de- 
rived in matrix form with the overlap integrals taken into account. 

I. INTRODUCTION 
HE COUPLING of mode theory in parallel wave- T guide systems has been of great interest in applica- 

tions to directional couplers, laser anays, waveguide 
switches, etc. [l], [2]. Although it has long been recog- 
nized that the previous coupled-mode theory is only ap- 
plicable to very weakly coupled systems [3]-[8], signifi- 
cant improvements for strongly coupled waveguides have 
only been presented recently in series of papers [51, 181- 
(111.  

The major improvement is probably the inclusion of the 
overlap integrals C,, defined in [8], when evaluating the 
power, and its resultant corrections to the various p a m -  
eters such as the propagation constants and the coupling 
coefficients in the coupled-mode equations. Using two dif- 
ferent methods, one based on a generalized reciprocity 
theorem and the other based on the variational principle, 
a new set of coupled-mode equations has been derived for 
a general (lossy or lossless) system [12]. Both methods 
give the same results. 

In this paper, we apply the generalized reciprocity theo- 
rem [I21 to a multiwaveguide system. The lossless case 
is treated here separately from the general lossy case, since 
in a lossless system, one may prefer to deal directly with 
powers for which the complex conjugates of the fields are 
needed, while for the general lossy case, one may not re- 
quire any complex conjugate operations in the formula- 
tion [8]-[12]. Thus, the definitions for the overlap inte- 
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grals and the coupling coefficients presented in Section I11 
will be different from those for the general lossy case pre- 
sented in Section IV. As will be shown in this paper, only 
when one chooses the rransverse electric and magnetic 
field components to be real functions, the two formula- 
tions will be identical in the lossless limit. New propenies 
of our coupled-mode equations are also presented analyt- 
ically with the overlap integrals properly included. 

II. GENERALIZED RECIPROCITY RELATION 
Assuming that the electric and the magnetic fields E' ', 

H"' satisfy the Maxwell equations in a medium E' " ( x ,  
y )  (for the whole space) and the corresponding boundary 
conditions and that E"' and satisfy the Maxwell 
equations in another medium ~ ' ~ ' ( x ,  y )  and the corre- 
sponding boundary conditions, it is straightfonuard to 
show that [12], [13] 

. V . ( E ( ' )  x "2)  - E'Z) x If'')) 

( 1 )  - - j o ( e ( 2 )  - E ( l ) ) E ( I )  . E ( ? )  

with the same procedure used for deriving the Lorentz 
reciprocity relation [ 141. When applied to a cylindrical 
geometry with an infinitesimal distance in the t-direction, 
(1) reduces to 

a 11 (E"' x " 2 )  - E'" x H"') - f & dy 
az 

= iw 11 ( , ( 2 ) ( x ,  y )  - P ( X ,  y ) ) E ' I '  - E'2' & dy. 

( 2 )  

Here ~ ( " ( x ,  y )  and E ( ~ ' ( x ,  y )  can be general media such 
as a single waveguide or a multiple waveguide system as 
long as they are translational invariant in the z-direction. 
The time convention exp ( -iwr) will be used in this pa- 
per. One notes that the two reciprocal relations (1 )  and 
(2) are exact as long as the two sets of field expressions 
(E"', H"') and ( E ( 2 ' ,  If"') are exact solutions to 
the Maxwell equations in medium E (  ) ( x ,  y ) and e '  ' ( x ,  
y ) respectively. 

III. COUPLED-MODE THEORY FOR A LOSSLESS 
MULTIWAVEGUIDE SYSTEM 

In this section, we derive the coupled-mode equations 
for a lossless multiwaveguide system. 

0733-8724/87/0100-0174Wl .OO O 1987 LEE€ 
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A.  General Properties of the Fields of the Guided and 

Modes E ( 2 )  I (EjP)' + E:P) ' )  e - i 8 ~ :  (6a) 
"2)  = ( ,H IP) '  - HIP'* )  e - iBpz  (6b) When the medium e ( x ,  y )  is lossless and translational 

invanant in the 2-direction, one knows that the field so- 
lutions of the form exist 

a) (E, + E,) eiB2 

(H, + H,) eiB2 

which are also solutions as discussed before. They cor- 
respond to the fields propagating in the -2-direction. 
Substituting the two sets of expressions into the general- 
ized reciprocity relation (2), we obtain 

which correspond to the fields propagating in the +E di- 
rection. Here, we assume the above set of solutions to be 
the guided mode of the system. Based on inversion sym- 
metry in the -z-direction, the following set of fields will where 

E' = 1 j A C ( ~ ) ( E I ~ ' *  - E:,) + €1P) '€19) )  & dy ( 8 )  

and 

also be solutions to the Maxwell equations [SI, [13]-[151 m 

b) ( E ,  - E,) e"" 
-0 ( -H, + H,) e-iBz 

which correspond to the fields propagating in the -2-di- 

or applying the time-reversal concept, it is easy to show cm 2 1 taking the complex conjugate of the Maxwell equations 

that the following two sets of solutions also exist: 

rection. If the medium is lossless e*(%, y )  = c ( x ,  y ) ,  by 0 

E:" x HIp'' * f & dy. (9) 
= = A 

-0 

where the * sign means complex conjugate. Since we con- 
sider the guided modes of the lossless system (excluding 
the leaky modes, cutoff modes, etc.), the propagation 
constant 8* is real. It is thus clear from a) and d) that one 
can choose the transverse field E, to be real, and find im- 
mediately that H, is real; E, and H, arc purely imaginary. 
However, if one uses complex E, (e.g.* in an optical fiber 
with a circular cross section, E, ( p,  4)  can be of the form 
J , ( k , p )  e'"''), one finds that H,, E, and H, will also be 
complex. From these geneml properties of the field so- 
lutions, we next derive the coupled-mode equations for a 
lossless system and some analytical relations between the 
coupling coefficients and the overlap integrals. 

B. n e  Derivation of the Coupled-Mode Equations 

We note that (7) is an exact relation since the fields (E' ), 

H"') and (E"', H ' 2 ' )  are exact solutions to Max- 
well's equations in e(l)(x,  y )  and c ' ~ ) ( x ,  y ) ,  respec- 
tively. 

CASE (2): In this case, we choose e' I ) ( x ,  y )  to be the 
medium of the multiwaveguide system e ( x ,  y )  

P ( X ,  y )  = e ( x ,  y ) .  (10) 
The solutions to the system are given approximately by 

N 

P ' 1  

N 

P'1  

E ; ' )  = aq(z) Ej"(x, y )  (1la)  

H,"' = c a&) Hjq'(x, y )  ( 1 W  

for the transverse field components. The 2-components are 
given by 

N 

H;l) = c aq(z)  H y ( X ,  y ) .  
P ' l  

CASE (1): Suppose we choose A similar derivation for the above relations has been given 
in [13] for the polarization vector or in [12]. One notes 

(3)  that E I Q ' ( ~ ,  y), q = 1, - , N are not orthogonal func- 
(4a) tions, and the overlap integrals C,, # 0. The second set 

e y x .  y )  = # ( x ,  y )  

= (E:@ + Ejq)) 
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generalized reciprocity relation (2), we obtain 

d 
CM -& u 4 ( z )  = i (k; + BP&) uq(z)  (14) 

9 4 

where 
.a 

(15) 

(16) 

and 
= 1 = =  

2 
. tM = -(C, + CS). 

One notes that tpq is a hermitian matrix, e, = C:. It is 
straightJorward to show that f, satisfies the same relation 
(7) as K, because 

2 2  RM 4 s s  = 
K, + - A&9)A&P'E'P'*E'q' & dy (17) 

where the second term is q u a l  to its complex conjugate 
quantity if one exchanges p and q when both and 

are real (lossless). Thus 

(18) 
which is an exact relation. It is seen clearly that only if 
fiP = o x  has - f 'PP = Pq (or if L!IC everlap intends 
are very small in the extremely weak couplin case, Rpq 
= 2; ). Otherwise one should treat f p q  and 4 as differ- 
ent quantities in general. One defines the matrix elements: 

(19) 6, = f: + g,t, = k, + &Bq. 
Thus, the coupling of mode equations can be written as 

where 0 is clearly hermitian since 

d, = 4: (21) 
which can be shown from (19) and u is a vector with its 
elements given by u 9 ( z ) ,  q = 1, 2, * - - , N. Another 
way to write the above equation is either 

&I 

dz 
C- = i(f+ + BC)U 

or 

where B is a diagonal matrix with the elements given by 

the propagation constants of individual waveguides aP. 
Here the superscript + means complex conjugate and 
transpose of the matrix. The second form (23) is useful 
since 

- = i ( B  + E - ' R ) u  

while the first form (22), which is similar (but not iden- 
tical) to that of [lo], [ 1 11, requires more algebraic manip- 
ulations in evaluating ( C-'BC + C - ' k  1. 

C. Power Conservation 
In Section III-B, we derived the coupled-mode equa- 

tions in matrix form (20), where d? is related to the overlap 
integrals C, and C:, and 4 is defined in (19). Both c 
and are proved to be hermitian without any approxi- 
mation in the matrix elements. Let us look at the power 
guided dong the muitiwaveguide system 

(24) 
&a 
dz 

(25) 
where is defined in (16). If the medium is lossless, the 
power of the guided mode must be independent of the 
position z ,  i.e., d P / &  = 0. We have the lossless con- 
dition 

(26) 
Using the coupled-mode equation (20). one finds imme- 
diately that the lossless condition is equivalent to 

i C a,*(& - d & ) u ,  = o (27) 
P.4 

where we have used the fact that &pq is hermitian. Since 
lip* and uq can be arbitrary values, we obtain . 

d, - 0; = 0. (28) 

That is, 0, must be hermitian, which is tme, since we 
have shown that 0, is indeed hermitian in (21) from the 
definition (19). Thus our formulation satisfies exactly the 
power conservation. An example will be shown later 
which illustrates this power conservation criterion. 

D. Power Orthogonulity of the Supennodes 

supermodes in the multiwaveguide system c ( x ,  y )  
Let us choose two sets of solutions to be two distinct 

e ( ' ) ( &  Y )  = e(& Y )  (29) 
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/ N  \ 

where di) with elements u t ) ,  q = 1, 2, - * - , N, is the 
eigenvector for the first supermode with a propagation 
constant yi 

P y x ,  y) = e(%, y )  = c * ( x ,  y )  (31) 

, N  \ 

and (I(’) with elements u y ) ,  p = 1, 2, , N, is the 
eigenvector for the second supermode with a propagation 
constant y,. The reciprocity nlation (2) gives 

Since y, # y, we obtain the general orthogonality condi- 
tion: 

a(l)+&(l) = 0, i # j .  (34) 
That is, any two eigenvectors comsponding to different 
propagation constants are orthogonal to each other with a 
weighting matrix given by c. 

An alternative way of deriving (34) is simply by look- 
ing at the coupled-mode equation (20). The supermode 
solution u ( z )  is given by the form 

u ( z )  = uet7‘. (35) 

Thus, the matrix equation (20) for the coupled-mode 
equations reduces to the eigenquation 

7th = &z. (36) 

(37) 

The eigenvalue y satisfies 

det Id - y q  = 0. 

Since both c and h arc hermitian, the eigenvalues for (36) 
must be real, that can be shown from elementary matrix 
theory [ 161. It is also obviously true from the fact that the 
medium is lossless. Another property of the matrix equa- 
tion (36) is that two distinct eigenvectors d i )  and uo) are 
orthogonal to each other with the “weighting matrix” 

0, i # j. (38) & ) + & + I )  = 

One notes that in the extremely weak coupling case, the 
coupling of mode quations have the same form as (20) 
except that E should be rcplaced by I, the identity matrix. 
Thus, the orthogonality relation (38) reduces to the well- 
known results: u(”+u( ’ )  = o for i # j in conventional 
theory. 
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IV. COUPLED-MODE THEORY FOR A GENERAL (LOSSY 
OR h S S L E S S )  MULTIWAVEGUIDE SYSTEM 

In general, a multiwaveguide system can be lossy. The 
previous formulation will not be applicable anymore. Ac- 
tually, the formulation for a lossy medium is very similar 
to the formulation in the previous section, except one does 
not have any complex conjugate operation, and special 
care is taken for the t-components of the fields as can be 
seen from Section III-A. A derivation has been presented 
in [12] which is similar to that in the previous section. 
Therefore, we briefly give the results below. 

A. The Derivation of the Coupled Mode Equations for a 
Lossy System 

CASE (I): Following the procedure in Case (1) of Sec- 
tion III-B, except that we choose the second set of solu- 
tions to be the form b) in Section 111-A, it is easy to derive 
[121 

where 
W 

- W  

and 
OD 

-0 

where no complex conjugate operation is involved, and 
there is a negative sign in the integrand of (40). The above 
definitions (40) and (41) are the same as thoSe used in [8] 
except for the constant factor of 4. The difference is only 
apparent because once we choose the normalization con- 
dition C, = C2, = * * * C,, = 1. the factor of 4 is ab- 
sorbed in E, and H,. Thus, numerically, zpq is identical 
to that in [8]. 

CASE (2): *allowing the procedures in Case (2) of 
Section III-B, we choose the first medium and the field 
solutions to be the same as ( 10) and ( 1 1 ) , and the second 
medium and the field solutions to be 

P ( X ,  y )  = P y x ,  y )  (42) 

(43a) E ( 2 )  = (EIP) - EIP)) e - ~ 8 ~ z  

H ( 2 )  = ( -Hjp’  + H i p ) )  e-’8pz. (43b) 
We obtain again from the generalized reciprocity relation 
2) 

c c, + cw d - a&) 
q 2 dt 

c, + cw 
4 ( 2 ) (44) = iC K, + bP 

I 

I I 
I 
I 

I 

I 

I 

1 
I 

I 

I 

i 

I 
I 
I 
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where 

and Cpf has been defined in (41). One can also show that 
Kpq satisfies the same equation as Epq in (39) by recogniz- 
ing that 

when the second term is symmetric with respect top and 
q. Thus 
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which is also an exact relation. 

form 

-- I'he coupied-mode tqiiaiiorr c&i be wiken in B mztrk 

- d  
Csi; a ( z )  = iQa 

where 

is symmetric, and 

(49) 

is also symmetric. The matrix equation can also be writ- 
ten as 

(51) 

M = Z-IQ ( 5 2 )  

M I %-'Be + C-'Kf (53) 

M = B + Z - ' K  ( 5 4 )  

d 
- a ( ; )  = iMu 
dz 

or 

or 

where B is again a diagonal matrix with the propagation 
constants 6, as the elements, and the superscript T means 
transpose of the matrix. Equation (53) is compared with 
the form in [lo], [ 1 11. One sees that the only difference 
is that the matrix is used here while the matrix C is used 
in [8]-[11]. K'used inthis paperisthe sameasKin (101, 
[ 111 from the definition (40) except for the factor of 4. 
The final form (54) is simpler than (53) since B is used 
instead of C-IBZ.  Thus, our coupled-mode equation 
looks simpler using the form (51) with M given b (54), 
than that in [lo], [ 111. The coupling coefficients ;fb, de- 
fined in (15) for the lossless case or K, defined in (45) 

for the general case differ from (defined in (8)) or zpq 
(defined in (40)) by the factor in the second pan of 
the integrand. This factor is also taken as one in [ 171. We 
believe that it should be more self-consistent to keep the 
factor since it was derived from (1 IC) making use of Max- 
well's equation as shown in [ 12, appendix A]. 

B. General Orthogonulity P r o p e q  of the Supennodes 
Following a similar procedure to that in Section 111-D, 

one applies the reciprocity relation (2) to any two super- 
modes 

\ 

and 

Using the eigenvector u( ' )  = column ( u \ ~ ) ,  u y ) ,  
a:)) and a similar form for uO),  one obtains 

- - , 

for Y, f 7, (57) 

#a = Qu ( 5 8 )  

q ( J ) T a ( ' )  = 0, 

which is the reciprocity relation that should be satisfied 
by any two eigenvectors of the matrix equation 

which follows (48). Alternatively, because both E and Q 
a n  symmetric matrices, the general orthogonality relation 
(57) is a well-known property in matrix theory [ 161. 

C. Reciprocity Relation for Two Sets of Solutions with 
Separate Boundary Conditions 

Let us look at the boundary value problem for a set of 
solutions to the coupled-mode equation (48). The general 
solution a( z )  is given by 

where 
U ( Z )  = A ~ ~ ~ A - ~ u ( o )  (59 )  

r = diagonal (71. 72, - * , 7 N )  (60) 
for a given boundary condition u(  0)  and the wave prop- 
agating in the +z  direction. Here the matrix A is defined 
to have the ith column given by the ith eigenvector of the 
matrix (S8), and y l ,  * - , y N  are the eigenvalues of (58). 

Consider a first set of solutions at z = 0 given the con- 
dition u(')(z = -I ), 

Let us look at another set of solutions with the boundary 
condition given at z = 0 and the wave propagating in the 
-z direction to z = -1 

a ( l ) ( O )  = Ae'T!A-la(l) (-i). (61 1 

(0). (62) u(2)(  - 1 )  = Aelr~A-la(2) 
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‘0 - 
0 
1 
0 
0 

0 - 

f‘ 

(C) 

Fig. 1. (a) A single waveguik p described by t ‘ P ’ ( r ,  y )  in whole space. 
(b) A single waveguide 9 described by Ciq’(r, y)  in whole space. (c) A 
multiwaveguide system described by t(r. y )  In whole space. 

Applying the reciprocity relation (1) to a cylindrical sur- 
face enclosing the planes z = -1  and L = 0 with a radius 
going to infinity, one finds [ 121 

( E “ ’  x “ 2 ’  - E‘2’ x H”’) . 2 & dy 
i s s  = - /  

= 1s ( @ I )  x “2’ - E‘2’ x “ 1 ’ )  - f & d y .  
2 - 0  

From the previous two sets of solutions, we have (Fig. 2) 
N 

P’I 
E,“’ = u j l ) ( z ) E i p )  (648) 

H,’” = c u j ” ( z ) H : P )  (Ub) 
N 

P’I 

and 

N 

q - 1  
H,‘2’ = - a y ’ ( z ) H y  (65b 1 

where the second set of fields propagates in the -2-direc- 
tion. The vector d ” ( z  = 0 )  is related to d ” ( z  = - I )  
bY (61), and u ‘ ” ( z  = - 1 )  is related to d 2 ) ( z  = 0)  by 
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I I 
I I 

0 1  I I O  
I 

I I 
I I 

2 , o  
O I  I 

I I , I 
I I P  3 1 0  
A A 
I 7 cc 

0 I 9 N - l  I 

I I 
, 

I 

O i  N t o  
I I 
I 

I 

2.-1 2 = 0  

Fig. 2. A multiwaveguide system with possible excitauon either at wave- 
guide p at : = -1  and the wave propagating in the *: direction. or at 
waveguide 9 at z = 0 and the wave propagating in the -2-direction. 

(62). The reciprocity relation (62) reduces to 

4 P T (  - I )  E u y  - I )  = u ” ” ( 0 )  e u y 0 )  (66) 
or equivalently 

--* pth position 

+ qth position 

wherep and q can IX arbitrarily set between 1 and N, we 
find the reciprocity condition: 

where we have used the fact that cT = E.  Since the matrix 
A has each column given by the eigenvector of (58), we 
have 

- 
C A ~ I T ~ A - ~  = ( ~ A ~ S ~ A - I ) ~  (70) 

- 
CAT = QA (71 1 

(72)  
Substituting the above relation into (70), we find that the 
reciprocity condition (70) is the same as 

CM = (EM)’ (reciprocity condition) (73)  

or 
r = A-IC-IQA = A - ~ M A .  

- 
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i.e., the product E M  must be symmetric. We see clearly 
that our formulation (48) satisfies this condition because - 

C M = Q  (74) 
where Q has been proved to be symmetric in Section IV- 
A. To illustrate our results, we show in the next section 
the special cases for two coupled waveguides and three 
coupled waveguides. 

V. SPECIAL CASES 
In summary, the coupled-mode equation is put in ma- 

trix form 
- d  C - a  = iQa 

dz (75) 

where both C and Q are symmetric. In another form, it is 
given by 

4' 
- a  = iMa dz 

where 

M = C-'Q. (77) 
The reciprocity condition (74) requires CM (or Q) to be 
symmetric. The above formulation is very general and is 
applicable to both lossy as well as lossless systems. 

A.  Two-Coupled Waveguides 
If N = 2, one has 

where 
- - 

Y o  = 81 + (K11 - C12KZI)/(1 - c:2> (79a) 

Kab = (K12 - K22G2)/(1 - CL) (7%) 

Kba = (K21 - KllElZ)/U - c:2>. (79d) 

- 
Y b  = B2 + (K22 .- Zl2K12)/(1 - c:2) (79b) 

- 
- 

As has beenpointed out in [8], the overlap integrals C12 
and Cz1 or C12 arc obtained fmm the integration over 
whole space in the transverse direction, and can be sig- 
- nificantly large even if Ifl2 is small. Thus the factor 1 - 
C:, may become very small and ICab is large. The reci- 
procity condition that EM be symmetric gives 

which has been shown in 1121, and can also be proved by 
substituting (79a)-(79d) into (80). The two eigenvalues 
Y I ,  y2, and eigenvectors are well known: 

Kab - Kba = (ya - yb)c12 (80) 

y 1 = 4 + $  (8la) 

where 

and 

where the orthogonality relation a ( 1 ) t ~ u ( 2 )  = 0 is indeed 
satisfied and it is the same as the reciprocity condition 
(80). 

B. hrec-Coupled Waveguides 
!fN = 3, we hrvc 

M = B + C - ' K  (83) 
which can be calculated easily by inversion of E, noting 
that E is symmetric: - - 

c12 = c21 = (Cl2 + C21)/2 

c13 = c31 = (c13 + c31)/2 

c11 = c2, = c33 = 1. 

(Ma) 

(Wb) 

(Mc) 

- - 
- - - 

The reciprocity condition that EM is symmetric leads to 
e.g., (EM )12 = ( CM 121 - - 

m12 - m21 = C12(m12 - m22) + E21m31 - C13m32 

( 8 5 )  
which will be useful later. Let us consider a symmetric 
case with the two outer waveguides identical [ 101: 

K12 e K32 * KZI K23 ( 8 h )  

K13 = K31 ( a b )  

Kll = K33 # K22. 

The matrix elements of M are obtained from (83) 

mll = 

mZ = 

m12 = 

m13 = 

mz1 = 

D =  
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The three eigenvalues and eigenvectors have been calcu- 
lated in [lo], [ l l ] ,  and are given here: 

( 88a 

(88b 1 

(88c) 

4 + $  
Y1 = 2 
Y2 = mll - m13 

4 - $  
Y3 = 2 

where 

4 = mll  + m13 + m22 ( 88d 

and 

and 

1 
- 7  

I 

- -1 "1 
It is straightforward to show that these three eigenvec- 

tors satisfy the general orthogonality relation (57) by di- 
rect substitutions. Notice that the formulation in [8]-[ l l ]  
does not satisfy this condition since in general C12 f CZI . 

Finally, let us consider an excitation with the boundary 
condition at z = 0 given by 

a ( 0 )  = [[I. (90) 

The general solution at z is [lo], [ 1 11 

a(z )  = AelTLA-'u(O>. (91 1 
Here, the matrix A is given by the three eigenvectors from 
(89a)-(89c). (Note that our definition of A is the inverse 
of that in [lo] and [ l l ]  with some typos corrected.) 

(92) A = [g ( l ) ,  qQ) (3) 
9 0 I .  

The results of AeZzA-' have been calculated in (lo] and 
[ 1 11. The solution at position z is 
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The total guided power is given by 

P ( z )  = Re [ U ' ( Z )  Cu(z ) ]  

2 J / z  (94) 
2 

= a + ( z )  & ( z )  = 1 + Fsin 

where the factor F is given by 

+ &(m22 - mll - m13>]. (95) 
For a lossless system, the power conservation requires that 
P ( z )  be independent of the position z .  Thus the factor F 
provides a check of the energy conservation. Although it 
has been shown before that our formulation satisfies the 
energy copervarion exactly by using the fact that the two 
matrices c and 0 are hermitian, one can also see from the 
reciprocity relation (85) substituted into (95) that F is in- 
deed zero provided that we choose Ejp' and Hjp' to be 
= reai functions for a lossless system. Therefore, C,, = 
C, = real. Numerical results will be given in the next 
section. The factor F from two previous methods [4], [ 101 
will also be calculated. 

VI. A NUMERICAL EXAMPLE AND DiscussloHs 

In this section, we illustrate our theory by a numerical 
example [lo] and compare it with those of two previous 
methods [4], [lo]. We consider three coupled waveguides 
with the two outside waveguides identical and symmetric 
with respect to the center waveguide (Fig. 3). Using the 
theoretical results discussed in Section V-B, we calculate 
K,, C,, and B,,. The analytical relation (47) is used to 
check the numerical accuracies of these quantities. We 
show in Fig. 4(a) the three eigenvalues y I ,  72, and y3 
from (88a)-(88c), which are the propagation constants of 
the three supermodes, versus the separation r between the 
waveguides. We compare our results (dotted line) and the 
exact solutions (solid lines) of the multilayered structure 
in Fig. 4(a) and those of the method in [ 101 (dashed lines), 
the method in [4] (crosses) in Fig. 4(b). We see clearly 
that the results using the method in [ 101 and our theory 
agree very well with the exact calculation. There is a slight 
error for the third eigenvalue ~3 near cutoff where the sep- 
aration r is reduced to near 0.2 pm. In our calculation, we 
choose the same parameters as in [lo], n = 3.4, n, = 
3.6, nz = 3.63, dl = dz = 0.15 pm, and t vanes. The 
method of [4] clearly has larger errors in y1 and y3, es- 
pecially y3 deviates from the exact results over a wide 
range of r near cutoff. The result of y2 using three methods 
agree with each other very well because 

y2 = mll - m13 = B1 + (KII - K13)/(1 - CI,) 

using (87) and (88). Since Cl3 and ( K t I  - Kl3)  are very 
small, (C13 = 0.136 - 0.00436 and ( K I i  - K13) = 
-0.0237 - -0.OOO4 (1 /pm) at f = 0.2 prn - 0.6 pm), 

- 

(96) 
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I nf -n '  r i  n f - n 2  

I 
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Fig. 3. Three coupled waveguides under investigation. (a) ~ ( x ) / c ,  for the 
three-waveguide system. (b) A t ' " ( x ) / e 0 .  (c) 3t ' : ' (xJ/eo.  
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if we have zI3 = 0 (theory of [4]) the difference is neg- 
ligible. Since CI3 = C,, = C13, the theory of [IO] gives 
the same results for y2 as the results of this paper. 

In Fig. 5 ,  we show the power conservation violation 
factor F for the initial excitation at the center waveguide, 
u ( 0 )  = column (0, 1, 0). We see clearly that our results 
indeed satisfy the power conservation very well and F is 
always zero. The factor F calculated from [IO] is always 
very small (less than 0.08 percent), but F calculated from 
[4] can be as much as 42 percent. 

Numerically speaking, our results are as good as or 
slightly better than those obtained from [lo]. The new 
features are that our formulation is derived using a sim- 
pler approach, and it satisfies both the reciprocity theorem 
and the power conservation law analytically, while [8]- 
[ 11 J can only show numerically that their method satisfies 
the power conservation and the reciprocity theorem ap- 
proximately. (One should note that power conservation 
and reciprocity are only satisfied self-consistently and not 
exactly since the modal expansions (1 1) of the fields are 
approximate.) Our formulation also leads to the general 
onhogonality relations (38) and (57) with the overlap in- 
tegrals properly taken into account, that cannot be ob- 
tained from _the formulation in [8]-[ll]. By setting the 
matrix or c to be the identity matrix, the coupled-mode 
equations and the onhogonality relations all reduce to the 
results of a conventional analysis 14). Our numerical re- 
sults also show that ignoring the overlap integrals does 

- 

t 
I ' -A 
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WAVEGUIDE SEPARATlOh( b m l  

(a) 

1 
'"i 

"t'- 
1 I 1 2 6 r 2  3 4 5 6 

WAVEGUIOE SEPARATION I p m )  

(b) 
Fig. 4. (a) A comparison of the propagation constants of the three super- 

modes between the exact results (solid lines) md  the results of this paper 
(dotted lines) for the three coupled waveguides in Fig. 3. (b) A cornpar- 
ison with other two methods: results using (101 (dashed lines), results 
using [4) (crosses). The results of this paper are given by dotted lines. 

10, I ,SO'"' 

; 00 ........ 
0 
J 
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[ -051 / ' 
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WAVEGUIDE SEPARATION (ern) 

Fig. 5 .  The power consemation violation factor F for an excitation at the 
center waveguide of Fig. 3. The results of F using [lo] (dashed line). 
and results of this paper (dotted line) are shown using the left scale. and 
the results of 141 (crosses) follow the right scale. 
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lead to erroneous results violating the power conservation 
significantly as has also been pointed out in [8] and 1121. 

VII. CONCLUSIONS 
Two sets of coupled-mode equations for a multiwave- 

guide system have been derived using a generalized re- 
ciprocity relation, one set for a lossless, and the other for 
a lossy or lossless system. New general orthogonality re- 
lations between the eigenvectors of the supermodes have 
been derived. We have derived the conditions on the ma- 
trix elements for the reciprocity theorem and the power 
conservation laws and have shown that our formulations 
do indeed satisfy those conditions analytically. 
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APPLICATION OF THE STRONGLY COUPLED-MODE THEORY 

TO INTEGRATED OPTICAL DEVICES 
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ABSTRACT 

A theory for strongly coupied waveguides is discussed and appiied LO two- 

and three-waveguide couplers and optical wavelength filters. This theory makes 

use of an exact analytical relation governing the coupling coefficients and the 

overlap integrals. It removes almost all of the constraints imposed by a 
I 

simpler and approximate coupled-mode theory by Marcatili. It a lso  satisfies the 

energy conservation and the reciprocity theorem self-consistently. We show very 

good numerical results with the overlap integral as large as 49 percent. The 

applications to electrooptical modulators, power dividers, power transfer devi- 

ces, and optical filters are a l l  presented with numerical results. 
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I INTRODUCTION 

The a p p l i c a t i o n s  of t h e  coupled-node theo ry  i n  i n t e g r a t e d  o p t i c a l  dev ices ,  

such as waveguide couplers  [ l ]  - [31, l a s e r  a r r a y s  [ 4 ] ,  151, and o p t i c a l  f i l t e r s  

[ 6 ]  - [ 8 ] ,  have been w e l l  known. However, t h e o r e t i c a l  improvements f o r  s t r o n g l y  

coupled waveguides have only been attempted very r e c e n t l y  [91 - [141. A simple 

and approx ina te  ve r s ion  of coupled-mode equa t ions  f o r  p a r a l l e l  d i e l e c t r i c  wave- 

guides  has a l s o  been presented by Y a r c a t i l i  [ 1 5 ]  t o  account f o r  t he  asymmetric 

p r o p e r t i e s  of waveguides using a newly found r e l a t i o n  between t h e  coupl ing 

c o e f f i c i e n t s  and t h e  ove r l ap  i n t e g r a l  of two coupled waveguides. A few con- 

d i t i o n s  are assumed in t h a t  paper: 

( 1 )  A scalar formulat ion of t h e  f i e l d s  is considered.  

( 2 )  The r e f r a c t i v e  index pe r tu rba t ion  is  very small such t h a t  second-order 

terms can be ignored. 

Thus t h e  new r e l a t i o n  between t h e  two coupling c o e f f i c i e n t s  i n  [15] i s  only 

approximate. 

(3) The ove r l ap  i n t e g r a l  c is assumed t o  be small (weakly couyl ing)  and i s  

no t  included i n  t h e  coupled-mode equa t ions  because the  coupled-mode 

equa t ions  i n  [ I S ]  a r e  almost the same as those  f o r  t h e  convent ional  

t heo ry  [ 2 ]  without i nc lud ing  the ove r l ap  i n t e g r a l s  i n  t h e  f o u r  

coupl ing parameters,  ya, yb, Kab and Kba. 

I n  t h i s  paper ,  w e  apply t h e  theory developed i n  191 - [14]  and show t h a t  

a l l  t h e  above cond i t ions  are not required.  I t  is shown t h a t  an exac t  a n a l y t i c a l  
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relation governing the coupling coefficients, the overlap integrals and the pro- 

pagation constants derived in [ 131 using a generalized reciprocity theorem can 

be combined with the formulation of Marcatili and will give very good numerical 

results even for strongly coupled waveguides. 

that the four parameters y 

integrals to obtain correct propagation constants of the supermodes. 

'a' 'b of waveguides and 

ficients are used in the coupled-mode equations in [151, that theory will not 

yield accurate numerical results and may violate energy conservation signifi- 

cantly [91, [131 unless the overlap integral c << 1 which is assumed in [151. 

It has been pointed out in 191 

and K should include the overlap a' *b' Kab ba 
Since only 

Kba of the conventional coupling coef- 

In Section 2 ,  we briefly review the strongly coupled-mode equations derived 

in [91 - [ll], [13] and [14], their orthogonality relation, and an exact rela- 
tion between the coupling coefficients Kab and R . We also show that this 
exact relation can also be derived from power conservation or reciprocity rela- 

tion for a lossless medium. In Section 3, we consider the two coupled wave- 

guides combining the strong coupling of mode equations and the formulation of 

[15] and illustrate the electrooptic effect. We then study the three waveguide 

couplers as power transfer devices and power dividers. 

and [17] assume all three guides have the same refractive indices, and a direct 

numerical approach for the multilayered structure is taken. 

cross-talk problems for both two and three coupled waveguides are investigated. 

Numerical results are presented and compared with those in [181 and [191. In 

Section 5, the application of the coupled-mode theory to the optical wavelength 

filters is studied and the theoretical results are compared with the experimen- 

tal results in [81. Finally, we give conclusions in Section 6. 

ba 

Previous studies in [161 

In Section 4, the 

I 
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2. THEORY OF STRONGLY COUPLED WAVEGUIDES 

Three very similar formulations of strongly coupled waveguides have been 

presented in [9], [12], [13]. The formulation by Haus et al. (121 is limited 

to the lossless system and has a small difference in the z-component of the 

electric field for the trial functions in the variational approach. The formu- 

lation of Hardy-Streifer [91 does no t  satisfy energy conservation and the 

reciprocity theorem and still contains a small error, while the theory of [13] 

(which was derived in a much simpler way) satisfies these laws analytically. 

Independently, a reformulation of [91 has been made [20] recently and is iden- 

tical to that of [131 after the modifications. The coupled-mode equation in 

1131, [14] and its properties are summarized below. 

2.1 Strongly Coupledlnode Equation 

The coupled-mode equation in vector form is given [131, [141, [20] by 

- d  C - a(z)  = dz 

where 

where the vector a(z )  has each element a (z) given by the electric field ampli- 

tude for the transverse component of the mode in waveguide p ,  and the matrix 

elements and K are defined in Appendix A. The matrix B is a diagonal 

P 

PQ PQ 
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matrix with the diagonal elements given by B,, B2, . . . , 8, of each individual 

waveguide in the absence of all other waveguides. It should be noted that ( 1 )  

the two matrices ?? and Q are symmetric 1131, [141, [201 and that is very important 

to prove the orthogonality property of the supermodes, and (2) the matrix M is 

not necessarily symmetric in general. 

2.2 Orthogonality of the Supermodes 

The supermodes of the multiwaveguide system satisfy the orthogonality 

relation (141 f o r  symmetric matrices and Q in Eq. ( 2 )  

where a (i) (a")) is the eigenvector of the supermode wich the propagation 

constant y ( y j ) ,  and the superscript T denotes the transpose of the matrix or 

vector. 
i 

2 . 3  

i.e 

Reciprocity Condition 

To satisfy the reciprocity relation, one finds that [141 

, the matrix Q must be symmetric which is true as derived in [14]. For two 

coupled waveguides , 

Equations (7) and (8) give 

(see Appen--.< A).  The above formula c12 + c21 
2 where c = Zl2 = 

(9) 

ion is true in 
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general for both lossy and lossless systems. If the system is lossless, one may 

also have a slightly different formulation as presented in [ 1 2 ] ,  1141 using 

field quantities involving complex conjugates. 

2.4 Power Conservation 

If the multiwaveguide system is lossless, one can choose the transverse 

field components E and E to be real functions and find that E and E are 

purely imaginary and C and K are real [14]. The total power guided by the 

multiwaveguide system is 

t t 2 2 

P4 PQ 

1 * 
P(z) = 7 Re Et x Ht*zdxdy 

where the superscript + 

(4) 
t and one has chosen E 

denotes the conjugate and transpose of the vector a(z>, 

and HtP) t o  be real. Thus using the fact that c and Q t 
T are real matrices, one finds that the condition 7 dP(z) = 0 also leads to Q = Q 

or ~ = (&)T, which is the same as the reciprocity condition €3 ( 7 ) .  

condition (7)  is very general since it is applicable to both lossy and lossless 

cases. A similar formulation (for a lossless medium) leads to the fact that Q 

is Hermitian provided one uses complex conjugate quantities with C 

matrices as defined in [ 1 4 ] .  The Hermitian matrix becomes obviously symmetric 

when it is real. Another derivation of the lossless condition for two coupled 

waveguides is shown in Appendix B, which also leads to Eq. (9) when y 

Kba 

Actually, 

3 
and c‘ 

Pq Pq 

a’ ‘b’ Kab’ 

are real. 

I 
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3. TWO AND THREE COUPLED WAVEGUIDES AND IMPROVEMENT OF 
MARCATILI'S THEORY 

I n  t h i s  s e c t i o n ,  w e  p re sen t  a combination of t h e  v e c t o r  fo rmula t ion  f o r  

s t r o n g l y  coupled waveguides and M a r c a t i l i ' s  t heo ry  which assumes two weakly 

coupled waveguides. 

guides  used as e i t h e r  power t r a n s f e r  devices  t r a n s f e r r i n g  power from one o u t e r  

guide t o  another or as power d iv ide r s .  

devices  are used as modulators are discussed. 

3.1 Two Coupled Waveguides 

We a l s o  d i s c u s s  t h e  a p p l i c a t i o n s  t o  t h r e e  coupled wave- 

The e l e c t r o o p t i c  e f f e c t s  when t h e s e  

3.1.1 Improvement of M a r c a t i l i ' s  fo rmula t ion  

We s tar t  with t h e  coupled-node equa t ions  

- =  da iyaa + iKabb dz 

i y b b  + iKbab db 
dz 
- a  

where 

where t h e  subsc r ip t  1 r e f e r s  t o  waveguide a o r  1 ,  and 2 r e f e r s  t o  waveguide b or 

2 ,  whichever is  convenient.  
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One notes that in the theory of Marcatili [151, (1) Cl2 is assumed to be 
zero in the above four parameters, (2)  K l l  and K22 are ignored, and (3) ICl2 

and K are defined only for scalar fields (pure TE case). Thus that formula- 

tion is almost the same as that for the conventional theory (21 and will lead to 

significant errors if z12 becomes larger than, say, 10 percent (Cll and C 
nornalized to be 1) [9], [13]. One notes that an exact relation holds between 

21 

are 22 

the conventional coupling coefficients [13], 

while a similar relation found in [151 is only approximate since the derivations 

there have assumed the refractive index variation A (x,y) and %(x,y) << 1 

(which is a good practical approximation). Using this relation, one can show 
a 

- 
= G21' that the following relation is :rue using (12), (13) and c = c12 

which is precisely the reciprocity condition, and it is the same as the power 

conservation condition for a lossless case (Appendix B). We define the asyn- 

chronism factor [ 1 5 )  in terms of the more correct parameters y a' Yb' ICab and 

in (12a)-(12d). Kba 

- 
(15) 

'b 'a 

2'Ka bKba 
6 =  

Given the initial excitation at z = 0 of a two-coupled waveguide, a(0) = 1, 

b(O) = 0, we obtain [91, E131 



where 

y b  + y a  
+ =  2 

- 
yb ya 

2 A a  . 

It i s  easy t o  show also 

or 

8 

, 

The s o l u t i o n s  (16a)  and (16b) can be wr i t t en  a s  



9 

A I I E  UULYUL p u w r ~  r A I I  w d v r ~ u i u c :  a w ~ i r i i  waveguiae D C ~ L U ~ L ~ I ~ L ~ S  a~ L a 

ob ta ined  using 

- e is 

where t h e  expansion i n  (21a) o r  (22a) i s  i n  terms of i n d i v i d u a l  waveguide modes 

and i n  (21b) o r  (22b) is I n  terms of a l l  :he guided and r a d i a t i o n  modes of wave- 

guide a a l o n e  s i n c e  they form a complete s e t  [9]. N u l t i p l y l n g  (21) by and 

i n t e g r a t i n g  over t h e  c r o s s  s e c t i o n ,  one ob ta ins  

t 

U ( a )  1 = a ( a >  + C12b(k) . (23)  

S i m i l a r l y ,  one f i n d s  

( a )  = a(%> + C2,b(e) 1 
V 

These boundary cond i t ions  a t  z = 0 and z = 2 fol low very c l o s e l y  those  i n  

[15] .  The guided power due t o  t h e  f i r s t  mode B1 i n  waveguide a i s ,  t h u s ,  

2 1 /2 ]  - c  c 
= 1 - ( 'f ") e 2sinh-1c6 s i n 2  [jKabKbaL( 1 + 6 ) 

1 + 6  



using E q s .  (201, (23) and (24). A similar procedure f o r  the output power in 

waveguide b when waveguide a is terminated at z = II leads to 

10 

* *  * 
= Re[(C21a + b)(C12a + b 11 'b 

2 1/21 1 - c  c 
l2 21 sin2 (JK,~K~~L(L + 6 

1 + 62 = c12c21 + 

These results are very similar to those in [15] except the parameters are 

defined in terms of the more accurate parameters y , yb, K and Kba. a ab 
3.1.2 Numerical results for two strongly coupled waveguides 

In Figs. l(a) - (d), we show numerical results for two coupled Ti-diffused 

3 LiNbO channel waveguides modeled as two coupled slab waveguides (which is 

possible using the effective index method [ I l l )  with the refractive index in 

waveguide a, n An = 2.2 + -, the effective refractive index in waveguide b,  a 2 
n = 2.2 - - An, where the refractive index difference I b 2 

A n - n  - n  a b  

is proportional to the externally applied voltage V across the two waveguides. 

The refractive index outside the two waveguides is assumed to be constant, 

n = 2.19. The waveguide dimensions are d = db = 2 ~ n ;  the edge-to-edge 

separation t = 1.9 Urn. The wavelength X is 1.06 Urn. In Fig. l(a>, the 

asynchronism 6 is plotted versus the refractive index difference. We see 

clearly that 161 is linearly proportional to IAnl. The overlap integrals 

C12 (dashed line) and C21 (dotted line) with their arithmetic average c (solid 
line) are shown in Fig. l(b), where they vary between 0.168 at An = 0 to around 

0.178 which do not satisfy the condition in [15] for weak coupling (c < 0.1). 

0 a 

- 

~~ 
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The numerical  r e s u l t s  f o r  t h e  propagation cons t an t s  are c a l c u l a t e d  wi th  more 

than  7 d i g i t s  of accuracy, and t h e  energy conservat ion l a w  [141 is a l s o  checked 

t o  be v a l i d  with e r r o r s  always less than 10 . ( I n  [ 1 4 ] ,  two energy conser- 

v a t i o n  v i o l a t i o n  f a c t o r s  have been defined and are used t o  check t h e  numerical  

accuracy of t h e  r e s u l t s . )  Figure l ( b )  d i f f e r s  s l i g h t l y  from t h e  q u a l i t a t i v e  

drawing of [15]  Ki th  a range of v a r i a t i o n  i n  t h e  ove r l ap  i n t e g r a l s  around (0.178 

-7 

- 0.168)/0.168 = 6.0 percent .  The coupling c o e f f i c i e n t s  K Kba* and 

are shown i n  Fig. l ( c ) ,  which agree w e l l  w i th  t h e  q u a l i t a t i v e  r e s u l t s  of 

a b 

' KabKba 

[15] .  The ou tpu t  powers P ( s o l i d  curve) and P (dashed curve)  are shown i n  

Fig.  l (c ) .  They do agree ve ry  w e l l  wich the  q u a l i t a t i v e  drawing of [ l S ] .  One 

n o t e s  t h a t  t h e  minimum of P 

t o  t h e  c r o s s - t a l k  problems which are discussed i n  Sec t ion  4. a 

a c t u a l l y  goes t o  almost ze ro  (Pa I c).00051 = 33 dB) a t  An z -0.0002, where 

P reduces t o  0.9723. The asymmetry of Pa and t h e  symmetric p r o p e r t i e s  of 

P ve r sus  An o r  t h e  a p p l i e d  vo l t age  agree very w e l l  wi th  what has  been presented 

i n  [151. However, our  numerical  approach provides  very good numerical  r e s u l t s  

even f o r  t h e  s t r o n g l y  coupled case with c > 0.1, while  t h e  theo ry  of [ 1 5 ] ,  

a l though t a k i n g  i n t o  account t h e  asymmetry p r o p e r t i e s  of coupled waveguides, is 

does not occur r i g h t  a t  An = 0 (where Pb = 1.0) due a 

The power P 

b 

5 

l i m i t e d  t o  weak coupl ing cases. 

3.2 Three Coupled Waveguides 

L e t  u s  cons ide r  a symmetric case f o r  which t h e  two o u t e r  waveguides are 

i d e n t i c a l .  So lu t ions  f o r  t h i s  case have been obtained i n  [ l o ] ,  [I11 , and [ I41  

and w i l l  no t  be der ived here .  

3.2.1 Power t r a n s f e r  devices  

When used as power t r a n s f e r  devices ,  t h e  t h r e e  coupled waveguides a r e  

assumed t o  have an i n i t i a l  e x c i t a t i o n  a t  z = 0 
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a(0) = 0 [; 
and the  inpu t  power PIN i s  eas i ly  found t o  be 1. 

The s o l u t i o n s  a t  p o s i t i o n  z are found t o  be [ l o ] ,  [ I l l  

and 

. 

where 

and the  t h r e e  propagation c o n s t a n t s  of t he  supermodes are 

Y 1  2 

(28)  
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have been derived i n  [ l o ] ,  1111, and 1141. 
mij  

where t h e  matr ix  elements 

The output  power i n  waveguide 1 a t  z = I., where waveguides 2 and 3 tenni- 

n a t e ,  is 

fol lowing a similar procedure as i n  Eqs. (21) - (26) .  

guide 3 when waveguides 1 and 2 t e rmina te  a t  z * 11 is 

The ou tpu t  power a t  wave- 

When applying (32) and (33) t o  a power t r a n s f e r  dev ice ,  one may need t o  assume 

ICl3 I and IC3,1 are small s i n c e  Waveguides 1 and 3 are not t e r n i n a t e d .  

3.2.2 Power d i v i d e r s  

When used as power d i v i d e r s ,  t h e  Zhree coupled waveguides have an i n i t i a l  

e x c i t a t i o n  a t  z = 0,  

a(O> =[I (34) 

and t h e  inpu t  power P can be found t o  be 1. The s o l u t i o n s  a t  p o s i t i o n  z are IN 

t i o i ,  [141 

i 4  
a , ( z )  = a3(z)  = i- 2ml 2 s i n  A z e 2  

Q 

a 
s i n  *] eiT" . 2 9 2  - 4 

a 2 ( z )  = [ cos - :'+i 2 

(35a) 

(35b) 
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One finds the output powers in waveguide 1 and 3 to be equal using (35) in (32) 

or (33) since the two outer guides are identical. 

3.2.3 Numerical results for power transfer devices and power dividers 

The three coupled waveguides considered here are assumed to be symmetric 

with respect to the center guide. 

guides to be dl = d2 * d3 = 2 pm. 

waveguides t = 1.9 um. The wavelength X is 1.06 pm. The refractive indices are 

We assume the dimensions of the three wave- 

The edge-to-edge separation of two nearby 

assumed to be 

An n = n  =2.2+- 1 3  2 (36a) 

An n2 = 2.2 - - 2 

where the refractive index difference between either one of the outer gilides and 

the center guide An = n - n is proportional to the applied voltage V. We 

first plot the unnormalized asynchronism 2y2 - y1 - y 

index difference An. One sees clearly at An = 0 the fact that all three guides 

1 2  
versus the refractive 3 

are identical does not imply the synchronism condition 

is met. At An = 0, we find 

- 13.0172261 
= 13.0138696 

= 13.0094738 

Y1 

y2 

y3 
and 

2Y2 - Y 1  - Y3 = 0.0010393. 



1s 

Choosing t h e  coupling l eng th  11 t o  be f ixed a t  Lc0 = 2 1 r / $ ~  where 

w e  f i n d  t h e  output  powers P 

shown i n  Fig.  2(b)  when t h e  waveguides a re  used as power t r a n s f e r  devices .  

( s o l i d  curve) and Pout,3 (dashed curve)  as 
o u t ,  1 

Peak 

power t r a n s f e r  from guide 1 t o  guide 3 a c t u a l l y  does not  occur a t  An = 0 as can 

be s e e n  from Fig.  2(b).  This  is due t o  t h e  c ros s - t a lk  problem when the  syn- 

chronism cond i t ion  is not m e t .  It occurs a c t u a l l y  a t  2y, - y,  - yq = 0,  i .e. ,  
c * 4 

when An f -0.00023. The c r o s s  t a l k s  a r e  c a l c u l a t e d  i n  Sec t ion  4. When used 

as power d i v i d e r s ,  t h e  t h r e e  coupled waveguides a r e  assumed t o  have a coupl ing 

l e n g t h  11 = n/$O = Lc0/2. 

r e f r a c t i v e  index d i f f e r e n c e  An are shown in Figure 2(c) .  Maximum ou tpu t  power 

The ou tpu t  powers i n  guides  1 and 3 ve r sus  t h e  

does occur  a t  An = 0 f o r  t h e  power d iv ide r s .  

I n  Figs.  3 (a )  and 3 ( b ) ,  we show t h e  output  powers P and P v e r s u s  o u t ,  1 ou t  , 3  

co t h e  coup l ing  d i s t a n c e  11 normalized t o  L C 

i n  t h i s  ca se ) .  Since the  synchronism condi t ion i s  not  m e t ,  P does not  go 

t o  z e r o  due t o  t h e  c ros s - t a lk  problems. 

p e r i o d i c  behaviors  f o r  t h e  power t r a n s f e r  dev ices  t h a t  have been d i scussed  i n  

[lo], [ll], although only t h e  magnitudes of l a l ( l l ) l ,  (a2(11)1 o r  ( a 3 ( k > l  i n s t e a d  

of powers a r e  presented the re .  This nonperiodic behavior is due t o  t h e  

= 2n/(y1 - y3) f o r  An = 0 (Lc = L 

o u t ,  1 

and P do not show 
Both P o u t , l  o u t  ,3 

asynchronism (2y2 - y1 - y3 0 0) of t h e  th ree  supermodes. 

and P do show p e r i o d i c  beha- is met ( i t  occurs a t  An = -0.00023), Pout,l 

v i o r s  as shown i n  Fig. 4 ( a ) ,  where Lc = 2n/(y1 - y 

An + 0. However, t h e  output powers f o r  :he power d i v i d e r s  always show p e r i o d i c  

When t h i s  c o n d i t i o n  

o u t ,  3 
is eva lua ted  a t  t h a t  3 

f u n c t i o n s  because of t he  synmetry of :he e x c i t a t i o n  and t h e  waveguide s t r u c t u r e  

( o n l y  two of t h e  t h r e e  supermodes, y1 and y3,  are e x c i t e d ) .  It is easy t o  see 
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from Eq. (35) that  the  output powers will be per iod ic  funct ions  of the d i s tance  I 
a for both Figs. 3(b) (2y2 - y1 - y3 + 0) and 4 ( b )  (2y2 - y1 - y3 = 0). 

~ 

I 
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4 .  CROSS-TALK PROBLEMS 

Cross-talk problems have been investigated recently for two coupled wave- 

guides [181 and three coupled waveguides [191 using either the conventional 

coupled-mode theory or direct numerical approach for the propagation constants. 

We apply the strongly coupled mode equations here to investigate the cross-talk 

problems. 

4.1 Cross Talks in Two Coupled Waveguides 

In the design of two coupled waveguides, one usually chooses the coupling 

length 11 such that 

$11 = n+/2 , n a odd integer (39 )  

and b(1) is maximum, a(E) - 0 provided that A a 0, i.e., two waveguides are 

identical. One finds immediately that the output power in waveguide b is maxi- 

mum. However, the output power in waveguide a is not zero because there is 

still an overlap of fields between modes in waveguides a and b. This cross-talk 

power is easily obtained by setting 6 = 0 in Eq. (25) as a conservative estima- 

tion [18] 
I 

(40) 
- 2  

Extinction ratio * Pa(& * 0) = C12CZ1 = C12 

since C12 - CZ1 when two waveguides are identical. 

vides a conservative estimation since it assumes waveguide a continues. In 

reality, guides a and b may start to separate at t = II gradually. Thus, ( 4 0 )  is 

only an approximation [ 18 I .  

The formula (40) only pro- 

This result showing that the cross talk is proportional to the square of 

the overlap integral agrees with that obtained in 1181. However, our numerical 
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calculations show that for two-coupled GaAs waveguides with the dimensions 

da = db = 2 urn, the edge-to-edge separation t = 1.9 vm, the refractive indices 

na * nb = 3.44, and the outside refractive index no = 3.436, the cross talk is 

-10 dB, which is close to -12.6 dB of [181 but not identical. 

number here is more accurate since we have calculated the propagation constants 

B1 and B2 up to 7 digits (after the decimal point) of accuracy; the power con- 

servation and the exact analytical relations are all checked so that the errors 

are always less than 

identical waveguides and the refractive indices are fixed (An - 0). 
using Fig. l(d) that the cross talk Pa can actitally be given by Eq. ( 2 5 ) .  At 

An a -0.0002, the extinction ratio goes to zero! Thus a very good extinction 

ratio can be obtained with a slight asymmetry introduced in the two waveguides 

We believe our 

The studies of cross talks in [181, [191 assume 

One finds 

with A l l  * 0. 

4 . 2  Cross Talks in Three Coupled Waveguides 

Three coupled waveguides have been introduced to decrease the cross talks 

when used as power transfer devices from one outer waveguide to another. 

However, the synchronism condition 

needs to be satisfied; otherwise, the cross talks may be proportional to the 

overlap integrals C12 and C23 of the two nearby modes instead of the two outer 

guided modes C13. When used as power transfer devices, one chooses 

or an integral multiple of 1 such that a2(1) = 0. 

to be (using s i n  = 0) 

We find tho, extinction ratio 
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Extinction ratio = 

= 

P 

Pout, 1 

4 4 sin 

(42) 

!I 2 p 2  - Y1 - Y3 
+ C13 cos sin2 [ *y;(ilyl - Y3) -y33 2(Yl - Y3) 

and similarly, the output power 

This analytical result for cross talks is useful since it explains clearly 

(1) If the synchronism condition is met, 

2 Extinction ratio = C13 

which is expected. 

( 2 )  If the synchronism condition is not met, the first term will contri- 

bute, and it will be proportional to the square of its argument if the 

synchronism condition is only approximately met. For this case, we 

show directly numerical results instead of using the approximate ana- 

lysis in 1191. 

In Figs. 5(a) - (d), we illustrate the numerical results for a three- 

coupled waveguide used as a power transfer device. The waveguide widths are 

dl = d2 = d3 = 2 um, the refractive indices are n1 = n2 = n3 = 3.44, and the 

outside refractive index no = 3.436 [19]. The wavelength is 1.06 ym. The 

waveguides' edge-to-edge separations t are varied between 0.9 um (near cutoff) 

to 4.4 urn. In Fig. 5(a), the propagation constants of the three supermodes using 
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t h e  s t r o n g l y  coupledlnode theory are p l o t t e d  and compared with those  c a l c u l a t e d  

e x a c t l y  from s o l v i n g  t h e  mul t i l aye red  ( s l a b )  s t r u c t u r e  numerically.  One f i n d s  

ve ry  good agreement. 

t o  cu to f f  near t = 0.9 Urn. 

C13 (dashed curve) are p l o t t e d  i n  Fig.  5(b) where C12 i s  as l a r g e  as 0.49, i.e., 

coupl ing is indeed very s t rong .  The 

coupl ing length Lc = 2r / (y1  - y3) i s  p l o t t e d  i n  Fig. 5 ( c )  ve r sus  t h e  waveguide 

s e p a r a t i o n  t. 

i n  Fig. 5(d) decays as t h e  waveguide s e p a r a t i o n  t is  increased.  

A small discrepancy occurs  f o r  y3 when t h a t  mode is c l o s e  

The ove r l ap  i n t e g r a l s  C12 ( s o l i d  curve) and 

(C13 = 0.125 a t  t = 0.9 Urn is a l s o  l a r g e ) .  

One f i n d s  t h e  e x t i n c t i o n  r a t i o  Pout , l  due t o  c r o s s  t a l k s  as shown 

Th i s  has  been 

d i scussed  i n  [19] f o r  a f i x e d  s e p a r a t i o n  t = 1.9 Urn u s ing  a d i f f e r e n t  approach. 

Our r e s u l t ,  a t  t h a t  s e p a r a t i o n ,  g i v e s  P = 0.1082 = -9.66 dB which i s  

a c t u a l l y  higher than -12 dB given i n  [19] where t h e  ove r l ap  i n t e g r a l  between t h e  

o u t ,  1 

two o u t e r  guides C13 ( 0  0.0435) has  been ignored. 

more accu ra t e  s i n c e  the  exact  propagat ion c o n s t a n t s  y 

are ca l cu la t ed  a c c u r a t e l y  up t o  7 d i g i t s  a f t e r  t h e  decimal p o i n t  and are a l s o  

The resu1:s he re  should be 

and y a t  t = 1.9 pm 
1’ Y2’ 3 

confirmed by t h e  s t r o n g l y  coupledlnode theory.  

t i o n  r a t i o  P 

Taking t h e  r a t i o  of t h e  ex t inc -  

2 t o  t h e  square of t h e  ove r l ap  i n t e g r a l ,  C12, one f i n d s  o u t ,  1 

= 0.78 a t  t = 0.9 Urn; 1.08 at  t = 1.9 Urn;  1.42 a t  t = 2.9 um, and P o u t ,  P 1 2  

1.75 a t  t = 3.9 pm. Thus one may on ly  say  t h a t  t h e  e x t i n c t i o n  r a t i o  i s  

roughly p ropor t iona l  t o  t h e  squa re  of t h e  o v e r l a p  i n t e g r a l  C 1 2 -  

t i o n a l  constant  es t imated i n  [19] i s  - 17 / 2  = 4.9 €or weak coupl ing and 

The propor- 

2 

4.913 = 1.63 for s t r o n g  coupling. The l a t t e r  seems t o  ag ree  b e t t e r  w i t h  ou r  

r e s u l t s  s i n c e  t h e  coupling i s  p r e t t y  s t r o n g  he re .  
7 

Thus t h e  f a c t o r  17-12 i s  no t  

a p p r o p r i a t e  f o r  t h e  example presented i n  (191. The s t r o n g l y  coupled-node theo ry  

should be a p p l i e d  when numerical accuracy is e s s e n t i a l .  
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5 .  OPTICAL WAVELENGTH FILTERS 

O p t i c a l  wavelength f i l t e r s  using waveguide coup le r s  have been r epor t ed  f o r  

Ti:LiNb03 and InGaAsP - InP materials. 

system is e s p e c i a l l y  i n t e r e s t i n g  because of i ts a p p l i c a t i o n s  a t  1.3 Um o r  

1.55 urn wavelength and i t s  p o t e n t i a l  f o r  o p t o e l e c t r o n i c  i n t e g r a t e d  c i r c u i t s .  

The experiment reported i n  [8] has two coupled waveguides: one has  a narrower 

The Inl,xGaxAsyP1-y - InP material 

guide width da * 0.42 um,  but a l a r g e r  r e f r a c t i v e  index na (ob ta ined  fo l lowing  

[211) wi th  y, - 0.127; t h e  o t h e r  has  the guide width db - 0.91 pm and yb = 0.078 

(n, is  a l s o  obtained fol lowing [211). The Ga mole f r a c t i o n  xa ( o r  xb) depends 

on t h e  As mole f r a c t i o n  ya ( o r  yb) f o r  lat t ice matching [211. The inpu t  power 

is assumed t o  be 1 i n  waveguide b. The r e s u l t s  of a d i r e c t  numerical  approach 

have been shown i n  [81 and compared with the experimental  data.  We have a p p l i e d  

the  s t r o n g l y  coupled-mode theory using Eqs. (25) and (26) (exchanging a and b 

s i n c e  the  inpu t  is i n  guide b i n s t e a d  of in  a )  and compared our  t h e o r e t i c a l  r e s u l t s  

with t h e  experimental  r e s u l t s  i n  Fig. 6. The agreement is very similar t o  t h a t  

i n  [81. 

are w i t h i n  t h e  measurement accuracy. No d e t a i l e d  exp lana t ions  a r e  g iven  f o r  t h e  

small discrepancy between the  r e s u l t s  f o r  t he  theory and the  experiment. We 

th ink  the  p o s s i b l e  reasons may be (1) there  is s t i l l  some d i f f e r e n c e  between t h e  

t h e o r e t i c a l  model i n  (211 and the  experimental  values  f o r  t h e  r e f r a c t i v e  index, 

and ( 2 )  t h e  l o s s e s  i n  t h e  waveguides a r e  not taken i n t o  account. However, t h e  

comparison shown i n  Fig. 6 does show very good r e s u l t s .  

The parameters reported in I81 used f o r  t he  t h e o r e t i c a l  c a l c u l a t i o n s  
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6 .  CONCLUSIONS 

A strongly coupled-mode theory (91  - 111 1, [131,  [141 has been presented and 

combined with the theory of Marcatili I151  for the two coupled waveguide case. 

The applications to two- and three-waveguide couplers, including power transfer 

devices and power dividers, have been investigated. This coupled-mode theory is 

applicable to very general cases for parallel dielectric waveguides with strong 

coupling and modes of general polarizations. 

of the waveguides and satisfies the energy conservation law and the reciprocity 

theorem self-consistently [ 131 , [ 141. The cross-talk problems in two and three 

coupled waveguides and their applications as optical wavelength filters have 

also been investigated and compared with the experimental data [81. 

It also accounts for the asymmetry 
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APPENDIX A 

THE MATRIX ELEMENTS C C K K AND THE FIELD EXPRESSIONS 
- - 

P4' PQ' PQ' PQ 

(a) mtrix elements for the overlap integrals. 

(b) Matrix elements for the coupling coefficients. 

"Conventional" coupling coefficients: 

where E(x,~) is the permittivity function of the multtwaveguide system and 

E(')(x,y) is the permittivity function of a single waveguide q. 

New K used in Eq. ( 4 )  of this paper [ 131, [w: PQ 

(c) The field expressions for the supermode. 

The transverse components are 



The longitudinal components are 

24 

(A7 
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APPENDIX B 

A 

The 

FORMAL T R E A ~ I N T  OF TWO COUPLED WAVEGUIDES FOR A LOSSLESS SYSTEM 

coupled-mode equations are assumed t o  be of the form i n  general: 

d - b ( z )  = iYbb(z )  + iKbaa(t) dz 

vhere v: have assu=eA f e r  the trl-asverse f i e l d s  

(B3 1 Et = a(z)E;') + b(z )Et  ( b )  

Xt = a(z)H:a) + b(z>X, (b) 

and the transverse components E ( a ) ,  

f inds that Y,, Yb, Kab and 

(B4) 

€I:') and X:b) are a l l  real. Thus, one 

, 

t 

are a l l  real.  Power conservation leads to 

d 1  * .  
= dz R e  Et x 8;zdxdy d 0 - P(z> 

d * *t * *  * = -Re [aa + ab CZ1 + ba E,, + bb 1 dz 

d * 
dz - - [aa + (ab* + ba*)T + bb*l 

* -  - 
I ab i ( y a C  - Yb" + \a - Kab) 

* - 
+ ba icyb; - yac + Kab - sa> 

= 
where w e  have used Eqs. (Bl), (BZ), the fac t  that C12, C21 are rea l ,  and 

12 
* F  
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Since both a and b are arbitrary, we conclude that the coefficients in front 

of ab and ba are zero and obtain: 
* * 

Kab - = (Ya - Yb)T 8 (B7 

which is the general lossless condition that the four parameters in the coupled- 

mode equations (Bl) and (B2) must satisfy. 
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FIGURE CAPTIONS 

Figure 1. (a) 

Figure 2. (a) 

(C) 

Figure 3. (a) 

Figure 4 .  (a) 

(b) 

The asynchronism 6 i s  plotted versus the refractive index 
difference of two coupled waveguides, A n = na - nb, which is 
proportional to the applied voltage V. 

The overlap integrals C12 (dashed line), C21 (dotted line) and 

C = (C12 + C21)/2 (solid line) are shown. 

The coupling coefficients Kab, Kba and /KabKab are plotted 
versus An. 

- 

The output powers in guide a, Pa (solid curve), and in guide b, 
Pb (dashed curve), are plotted versus An. The parameters are 
da = db = 2 ;E, vaveguide cdge-ro-edge separat ion t = 1.9 urn, 
wavelength 
The outside refractive index q = 2.19. 
L = 0.5811 ma. 

a 1.06 Urn. “a = 2.2 + An/2, nb = 2.2 - h 1 2 .  
The coupler length 

The asynchronism 2y2 - y1 - y3 of three coupled waveguides are 
plotted versus the refractive index difference An = ni - n2 
which i s  proportional to the applied voltage. The parameters 
are all similar to those in Fig. 1. dl = d2 = d3 = 2 urn. 
t = 1.9 pm, X = 1.06 urn, n1 = n3 = 2.2 + h / 2 ,  n2 = 2.2 - AnI2. 
Lco = 0.8105 mm. 

The output powers  POUT,^ (solid curve) and  POUT,^ (dashed curve) 
are shown for the power transfer devices with input power 
PIN = 1 in waveguide 1. 

The output powers  POUT,^ =  POUT,^ are plotted versus An when the 
three waveguide couplers in (a) are used as a power divider. 

The output powers  POUT,^ (solid curve) and  POUT,^ (dashed curve) 
are plotted versus the coupling distance L normalized to Lc for 
a power transfer device. 
used except that An is fixed to be zero and L is varying. 

The same parameters from Fig. 2 are 

The output powers  POUT,^ =  POUT,^ are plotted versus the nor- 
malized distance L/k when the three coupled waveguides in 
Fig. 2(c) are used as power dividers. (An - 0, J1 is varying 
here. ) 

The output powers  POUT,^ (solid curve) and  POUT,^ (dashed curve) 
are plotted versus the normalized coupling distance E/Lc for the 
case &l = -0.00023 where 2y2 - y1 - y3 = 0. 

Similar conditions hold as 4(a) except that the device is used 
as a power divider. 
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Figure 5 .  (a> The propagation constants of the three supermodes using the 
strongly coupled-mode theory (dotted lines) are compared with 
the exact numerical calculations (solid lines). The waveguide 
edge-to-edge separation t is varied. 
d l  = d2 * d3 * 2 pm, n1 = n2 = n3 = 3 . 4 4 ,  no = 3.436. 

The parameters are 

= 1.06 Urn. 

(b) The overlap integrals C12(=C21) and C13(=C31) are plotted versus 
the wavelength edge-to-edge separation t. 

(c) 

(d) 

The coupling distance LC = 2 r / ( y l  - y3)  is illustrated. 

The output power  POUT,^ (dashed line) in the guide 3 and the 
extinction ratio  POUT,^ (solid line) due to cross talk are 
shown. 

Figure 6.  (a) The output powers of two coupled InxGai-,As P - InP wave- 
guides used as an optical wavelength filter! ';$e input power is 
assumed to be 1 in waveguide b. The theoretical results for 
output powers at waveguide a, Pa (solid curve), at waveguide b, 
Pb (dashed curve), are compared with the experimental data 
(circles) for Pa. 
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ABSTRACT A strongly coupled-mode theory for reciprocal anisotropic 

multiwaveguide system is derived. The general reciprocal anisotropic 

medium is described by a symmetric permittivity tensor that can have non- 

zero off-diagonal elements. The derivation is based on the generalized 

reciprocity relation. The coupled mode equations are applicable to both 

lossy (gain) and lossless systems. For the special case of lossless 

systems, it is shown that the matrices in the coupled mode equation are 

Hermitian so that energy conservation is obeyed exactly. For the special 

case of a single anisotropic waveguide, our results also reduce to the pre- 

viously derived solutions by Marcuse. The strongly coupled-mode theory in 

an anisotropic multiwaveguide system is also illustrated with numerical 

examples. 
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1. Introduction 

The application of the coupled mode theory to integrated optical devices 

such as waveguide couplers [1]-[3], laser arrays [4]-[5] and optical filters 

[61-[81 has been well known. Although it has long been recognized that 

the previous coupled mode theory is only applicable to weakly coupled 

systems [ 3 ] - [ 4 ] ,  significant improvements for strongly coupled waveguides 

have only been developed recently in a series of papers [9]-[17]. The 

major improvement is the inclusion of the overlap integral C between 

modes of different waveguides that have been neglected in the conventional 

theory. 

P4 

Many of the integrated optical devices are made of materials that are 

anisotropic [ 1 8 ] - [ 2 2 ] .  In anisotropic coupled waveguides, numerical solu- 

tions are usually difficult to calculate. In this paper we generalize the 

strongly coupled mode theory to an anisotropic medium in multiwaveguide 

systems. The strongly coupled mode equations are derived for a general 

reciprocal anisotropic medium. The general reciprocal anisotropic medium 

is described by a symmetric permittivity tensor that can have nonzero off- 

diagonal elements. The derivation is based on the generalized reciprocity 

relation [ 141-1 151. In Section 2 ,  the generalized reciprocity relation is 

extended to an anisotropic reciprocal medium. I n  Section 3 ,  we briefly 

discuss the mode solutions and mode orthogonality relations €or a general 

reciprocal anisotropic medium. In Section 4, the coupled mode equations for 

a general reciprocal anisotropic medium are derived for multiwaveguide 

systems. Expressions for the overlap integrals and the coupling coef- 

ficients are given. The derived coupled-mode equations are applicable to 

both lossy (gain) and lossless systems. In matrix notation, the coupled 

mode equations are of the form 

I 
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a 

where C is the overlap integral matrix. The elements of the vector a 

represent the amplitudes of the modes a (z) in the waveguides, which can be 

modes of different polarizations in the same waveguides and/or different 
P 

waveguides. Two special cases are examined next. In Section 5, the spe- 

cial case of a lossless system is studied. It is shown that in this case 

both C and Q are Hermitian matrices. Hence energy conservation is obeyed 
I 0 

self-consistently. In Section 6, the special case of coupling of modes in 

a single waveguide is examined. In this case, the matrix C is diagonal. It 
0 

is then shown that in this case the coupling coefficients ate identical to 

those previously derived by Marcuse 1191. In Section 7, the coupled mode 

theory is illustrated with a numerical example using Ti-diffused LiNb03 

waveguides. The application of voltages introduce; nonzero of €-diagonal 

elements in the permittivity tensor. Thus there is coupling between the "E 

and TM modes in addition to coupling between modes of different waveguides. 
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2. Generalized Reciprocity Relation for Anisotropic Medium 

Let E<1>, E<1> be the solution to Maxwell's equations and the boundary 
<2> 

conditions in a medium ;<l> (x,y) for the whole space and E 

E<2> be the solutions to Maxwell's equations and the boundary conditions in 

another medium E 

tivity tensors satisfy the relations 

, and 

=<2> 
(x,y). Both media are reciprocal so that the pemit- 

(1) 

(2 )  

=<l>T =<l> 
E (x,y) - E (X,Y) 
3<2 >T 4 2 )  
e (x,y) = e (X,Y) 

where superscript T denotes transpose. 

It is straightforward to show that 

<2> ( 3 )  ;<2> =<I> 
- E .  > - E  <I> E<2> - E<2> E<1>) iw ( V (E  

with the same procedure used for deriving the Lorentz reciprocity relation. 

The time convention exp(- iwt) is used in this paper. When applied to a 

cylindrical geometry, the generalized reciprocity equation ( 3 )  becomes [ 141 

a <1> E<2> - E<2> - /I dxdy 2 (E 

= iw /I dxdy E<'> (;'2>(x,y) - E 

aZ 

(4 1 =<1> <2 > 
(x,~)) E 
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3 .  Mode Solutions in Reciprocal Anisotropic Medium 
and Mode Orthogonality 

In this section, we re‘view the mode solutions and orthogonal relations 

in an anisotropic medium. In a reciprocal anisotropic medium, 

The following decomposition is convenient for analyzing waveguide modes 

e = et + etz + Ezt + E Z Z  

where subscript t denotes transverse components. 

3 = T  = 
€Zt €tz 

= ti E Z Z  
3 

€22 

a 3 = 3 

Both et and czz  are symmetric while the transpose of et. is eZt and vice 
versa. The longitudinal field components can be expressed in terms of the 

transverse field components as follows 
1 E * -  

z iwu Ot Et 

= 
If E (x,y) is transiational invariant in the 2 direction, then mode solu- 

tions exist. For modes propagating in the +z direction, the modal solutions 

of the electromagnetic fields are 
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where q is the mode index. 

gation constant 8 

There also exists a mode with the same propa- 

and propagating in the -2 direction. These are denoted 
q 

by 
~ ( - q )  (x,y) e -i Bqz 

E(-') (x,y> e - W q z  

For lossless systems, the two sets of mode functions (E ('I, E€(')) and 

(E( -q ) ,  H(-q)) have a simple relation (Section 5, equations (31)-(34)). 

However, for a general lossy (gain) reciprocal anisotropic medium, there is 

no simple relation relating the two sets of solutions [191,  1231. (If 

E. 

symmetry also exists. 

iI = 
= 0 and c Z t  = 0, a simple relation such as that in [151  for z-inversion tz 

Using the generalized reciprocity relation (41, mode orthogonality 
=<Z> ;<1> ;, ,(1>) - - relations can be derived readily. Let c 

(E"), 8"))  exp (isqz), and (E'2>, H<*>) = (E"), E€")) exp (iBpz). It 

then follows that 

for 8 f - Bq. Similarly, the following orthogonality relation P 

4 BP* also holds fo r  0 
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4. Coupled Mode Equations 

= 
Consider a multiwaveguide system (Figure 1) with permittivity E (x,y). 

Also let :(p)(x,y) be the permittivity f o r  a single waveguide p. 

the generalized reciprocity relation in the following manner. Let 

We use 

I 

be the permittivity and mode solution for a single waveguide p. For <1> we 

let 
5 

(17)  
=<l> 
E (X,Y) = e (X,Y> 

of the multiwaveguide system (Figure 1). The transverse field components 

of the multiwaveguide system are then approximated by linear superpositions 

of the individual waveguide modes of single waveguides. 

where N is the number of modes that enter into the approximation. Note 

that each single waveguide q can contribute more than one mode (e.g. , 

TE and TMo modes). 
0 

It then follows from Maxwell's equations that the longitudinal com- 

ponents are then given by the expansion (Appendix A) 
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S u b s t i t u t e  (14)  - (21) i n t o  both s i d e s  of t he  gene ra l i zed  r e c i p r o c i t y  rela- 

t i o n  (4). The lef t -hand s i d e  of ( 4 )  g i v e s  

where 

i s  t h e  overlap i n t e g r a l  which g e n e r a l l y  is not  zero.  The formula t ion  wi th  

t h e  neglec t  of t h e  C terms wi th  p * q has  been r e f e r r e d  t o  as t h e  conven- 

t i o n a l  coupled mode theory.  
P4 

The right-hand s ide-of  equat ion  ( 4 )  g ives  

where 

(25  
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Equating ( 2 2 )  and ( 2 4 )  gives the coupled mode equation 

where 

9P + 8P cPq 
= K  

QPCl 
(27)  

The coupled mode equation ( 2 6 )  can be conveniently cast in matrix form, 

a f 

where the matrices C and Q are of dimension N x N and the column vector a 

is of dimension N x 1. 
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5 .  Coupled Mode Equations for Lossless Multiwaveguide Systems 

The lossless (gain) medium is a special case of the general l o s s y  

system when the loss approaches zero. In this section, we shall derive the 

coupled mode equations for lossless systems. It will be shown that in this 

special case the E and matrices of the last section are both Hermitian so 

that energy conservation is obeyed exactly. 

'(9) For a lossless reciprocal anisotropic medium for both and E , we 

have 
=T* a 
€ = €  ( 2 9 )  

(30) 

Let 

be the field solutions of a waveguide in a single waveguide q with real 8 

Then by taking complex conjugates of the Maxwell equations, it follows that 
q 

is also a set of modal solutions and is propagating in the -2 direction 

with a propagation constant 6 . In this case, the modal fields propagating 

in the -2 direction are simply related to those of the +2 direction as 

f 0 llows 

4 



Hence 
* c = c  

Pq 9 P  
(36 )  

a 

and C is Hermitian. 

i. 

To show that Q is Hermitian, we make the fo l lowing  cho ices  f o r  the  

genera l i zed  r e c i p r o c i t y  r e l a t i o n  (4). Let 

(37) 

( 3 8 )  

=<l> = '(4) 
8 

p> ( 9 ) .  + E(q))  ,iBqz 
2 

= (Et 

(39 )  
H < l >  (H(q) + H(q)) e i Bqz 

t 2 

and 
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Then, from ( 4 )  it follows that 

+ g(P)*. (;(PI - =(q)) ZSq) 
t tz €tz 

=(PI - '(4)) , *(4) 
%t t 

+ E2 (PI* ( € Z Z  (PI - %2 (4) )  E ( 4 ) }  2 ( 4 3 )  

* 
Using ( 3 1 )  - ( 3 4 )  in (25) ,  the quantity K - K can be calculated. 

4P P4 
After a moderate amount of algebraic manipulations, it can be shown that 

K - K is equal to the right-hand side of ( 4 3 ) .  Hence, 
* 

4P P4 

* 
= K - K  

4P P4 (!3, - 6,) Cpq 

It then follows from (271,  ( 3 6 )  and ( 4 4 )  that 

* * * 
C - K  - 6  C 

4P + B, P4 P4 4 4P 
= K  - 

QP4 Q4P 
= o  

( 4 4 )  

( 4 5 )  

= 
Hence, Q is Hermitian. It is straightforward to show that these relations 

( 4 4 )  and ( 4 5 )  reduce identically to those of the isotropic waveguide case 

in [ 1 5 ] .  

Energy conservation can be demonstrated as follows. The power P(z) in 

the mltiwaveguide system is 

* 
( 4 6 )  1 

Et Ht P(z) = Re f f  dxdy 2 
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Using (18)  and (19) i n  ( 4 6 )  g ives  

a a 
Using (28) and the f a c t  that both C and Q are Hermitian, i t  follows that 

dP/dz = 0 and the power P(z)  is  independent of 2. Energy conservation i s  

obeyed . 
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6 .  Coupled Mode Equations f o r  Single Waveguide System 

In a single waveguide system, we have E - %(') and is the per- 

turbed permittivity that causes coupling among the modes in the single 

waveguide. 

reciprocal anisotropic medium were derived previously by Marcuse [191. 

this section, we shall show that for this special case, our results are 

identical to those in [19].  

The coupled mode equations for a single waveguide with a general 

In 

Let 

denote the unperturbed permittivity of the single waveguide. 

E(') are the mode solutions of e '  with propagation constants 6 

Hence they obey the mode orthogonality relation of (13). 

orthogonal relation, it is easy to see that C as given by (23) is a diagonal 

matrix. Hence 

Then E(') and 
f 

and B . 
P 4 

Using the mode 
= 

C = C  6 (49 
PQ P P4 

where 6 is the Kronecker delta. The coupled mode equations become w 
da 

cP (5 - i BP ap(z>) = i 1 K~~ a,(z> 
4 

for p = 1, ... , N. Using (48) in ( 2 5 ) ,  it follows that some of the terms 

are cancelled and the expression f o r  K becomes 
4P 
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a ( -PI*  “zz -I - ) 
+ *t =zz (Et2 “2 

It can be shown (Appendix B) that (51 )  is i d e n t i c a l  t o  equation ( 4 6 )  

of Marcuse 1191. 
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7. Numerical Example 

In this section we illustrate the coupled mode theory developed in the 

previous sections with a numerical example using Ti-diffused LiNb03 wave- 

guides. Consider two coupled slab waveguides, a and b, of thicknesses, 

d 

respectively to the two slabs. 

direction for both guiding and substrate regions (Figure 2) .  

following analysis we shall include four modes coupling (N=4).. 

modes are TE 

as TEO, TM;, TEo and TM; with the corresponding amplitudes a,(z) ,  a2(z), 

a (2) and a (2) in the same order. 

tions. 

cb represent the permittivity profile of single waveguide b with zero 

voltages. 

and db, and edge to edge separation, t. Voltages Va and Vb are applied a 
The uniaxial axis is assumed to be in the y 

In the 

The four 

TM, of guide a and TE, and TM, of guide b, which are denoted 0’ 
a b 

Then we make the following substitu- 3 4 
a 

Let ca represent the permittivity,profile of a single waveguide a and 
= 

a ‘  

for guide a, where 

= 
a 

EC 

0 0 

n 
“0 ea 

2 
oa n 0 lo 

€0 

2 n 

0 

0 

0 
0 

2 
e n 

0 

0 

0 

n 2 
0 

da for 1x1 < 2 

da for 1x1 > 2 

(53) 
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For guide b 

“0 

= 
P 

‘b 

2 
ob n 

0 

0 

= 
“c 

0 0 7  

eb 
2 
ob n 

n 

0 

db for Ix - xbl < 2 

db for Ix - xbl > 2 

(54 j 

4 1 )  = = 

‘a 

Then, let E 

let e 

both’;‘‘’ and e are equal to e . Similarly, e 

( 4 ) ,  H(4)) = (E, E) of ( E ( 3 ) ,  E(3)) = (E, H) of the TEO mode of and (E 

the % mode of eb. 

= e and (E(1), H(l)) = (E, E) of the TEo mode of ea. Also 
a 

= =(2)  = and (E(2), H(2)) = (E, E) of the TMo mode of ea. Note that 

z ( 4 )  = and let “b 
4 3 )  = 

4 2 )  a 

a 
a 

a 

The permittivity is then taken to be the permittivity profile of the 

multiwaveguide system with voltages V a 
teristics of LiNb03, the perinittivity ;(x,y) can be approximated [221  .by the 

following expressions ( 5 5 )  and ( 5 6 ) .  

and V,,. Based on the charac- 
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Let 

.)' 
E 

Y - €0 

V 

oy oy 22 d 
2 4 rY 3 n - n  

Y 

0 

with y = a, b. Then 

O l  

da for 1x1 < - 
db for Ix - xbl < - 2 

2 

otherwise ( 5 6 )  

In the numerical results to be illustrated, we have assumed the input 

wave to be the TM mode of guide a. Hence the coupled mode equations are 

solved and the initial conditions are set by letting a (z=O)=l, for 9-2 and 

0 for q=1,3,4. The mode functions are normalized such that C = 1, 

q = 1,2,3,4. In the calculations, we have tested the power conservation with 

equation (47). 

percent. The reason for using high accuracy is because the cross- 

polarization powers can be very small (of the order 10 or less). Thus 

this high accuracy based on double precision is only for self-consistent 

check. The transfer efficiency of the two modulators of Figure 3 are con- 

0 

q 

qq 

- 10 Power conservation is checked numerically to within 10 

-4 

sidered. Note that the two directional couplers have identical input 

guides but different output guides. The coupling section is of length II. 

By matching the field solution to the output guides, it then readily 

follows that [ 1 3 1 ,  [ 1 7 1  
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(57) 

for the output power of directional coupler 1. 

powers of directional coupler 2 are 

Similarly, the output 

In the numerical results of Figures 4 to 6 we have used the following 

parameters: da = db = 1.6 urn, t = 1.6  pm, X = 0.633 urn, no = 2.281,  
a b 

= r 
r22 22 = 3.4 x 1 0 - l ~  m/v, ne 0 2.195, noa “ob = 2.286,  nea = neb = 2 . 2 ,  

a b rn % and r = r = 28.0 x m/V. In Figure 4, Pa and Pb are plotted 51 51 
as functions of the coupling length I for Va = Vb = 0. 

diagonal elements for s(x,y) in this case and Pa 

is no coupling to the TE modes. We note that when the output power in 

waveguide b is maximum at around a = 700 urn, the output power in waveguide 

a is not zero. This cross-talk is due to the overlap of fields between 

There are no off- 

w TEO n o  
= Pb = 0, so that there 

modes in waveguide a and waveguide b [171. 

C2& in this case is equal to 0.1753076 which is outside the region of vali- 

dity of the conventional coupled-mode theory. The computed coupling coef- 

ficient = K42 = 0.2284878 x 10 . 

The computed overlap integral 

-2 
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I n  F i g u r e s  5 and 6 t h e  ou tpu t  powers a r e  p l o t t e d  as func t ions  of t h e  

modulating vol tage  V wi th  V 

meters chosen and a vo l t age  range of -20 v o l t s  < V < 20 v o l t s ,  t h e r e  i s  

apprec iab le  t r a n s f e r  of power between the  two guides.  The r e s u l t s  of 

F igure  6 i n d i c a t e  t h a t  t h e  t r a n s f e r  of power t o  the  TE modes is of t he  o rde r  

of -40 dB t o  -30 dB with  PtEo l a r g e r  than P:% because of t h e  l a r g e r  

ove r l ap  of t he  f i e l d s  between t h e  TMo mode of guide  a and t h e  TE 

guide  b. 

- V and V a b 
= -V and L = 700 urn. For t h e  para- 

mode of 0 
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8. Conclusions 

The s t r o n g l y  coupled-mode theory  for  a r e c i p r o c a l  a n i s o t r o p i c  medium i n  

multiwaveguide systems has been der ived  i n  t h i s  paper.  

and l o s s l e s s  cases are considered. I n  gene ra l ,  t h e  TE and t h e  TM modes of 

s e p a r a t e  waveguides are coupled due t o  the  an i so t ropy  of t h e  medium. For  

t h e  l o s s l e s s  case ,  t h e  energy conservat ion i s  shown t o  be s a t i s f i e d  i n  t h i s  

coupled mode formulat ion.  For t h e  case  of a s i n g l e  a n i s o t r o p i c  waveguide, 

w e  show t h a t  our r e s u l t s  reduce i d e n t i c a l l y  t o  those  of Marcuse [iSj. The 

numerical  r e s u l t s  f o r  two coupled a n i s o t r o p i c  waveguides wi th  both TE and 

TM mode coupl ings have been i l l u s t r a t e d .  

Both l o s s y  (ga in )  

0 

0 
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Appendix A: Der iva t ion  of t h e  Long i tud ina l  F i e l d  Components 

To de r ive  t h e  expansion of t h e  l o n g i t u d i n a l  f i e l d  components as given 

by (20)  and ( 2 1 ) ,  we no te  t h a t  

S u b s t i t u t e  t h e  expansions (18)  and (19)  i n  (Al)  and n o t e  t h a t  f o r  t h e  q t h  

mode of waveguide q 

One then  obtains  ( 2 0 ) .  To d e r i v e  (211 ,  n o t e  t h a t  

S u b s t i t u t i n g  ( 1 8 )  i n  (A31 and us ing  (A4) g i v e s  ( 2 1 ) .  
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Appendix B: Comparison of K _ _  in (51) with the Result of Marcuse [191 
YlJ 

In comparing (51) with equation ( 4 6 )  of Marcuse [191, it is to be 

noted that the permittivity tensor elements are defined differently. 

where superscript (m) denotes Marcuse. Also 

-(mi = = e + Z Z Z  
e Z  Zt 

(B3 1 

With the above substitution in equation ( 4 6 )  of [191, it can be shown, 

after a moderate amount of algebra, that the coupling coefficient K is 
4P 

identical to expression (51). 
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Figure Captions 

Figure 2 

Figure 3 

Figure 5 

Figure 6 

+PI A single waveguide p described by E 

space 

A single waveguide q described by z(q)(x,y) for the entire 

space 

A multiwaveguide system described by e(x,y) in the entire 

space. 

(x,y> for the entire 

Geometric configuration of two coupled anisotropic wave- 

guides for the numerical example in Section 7. 

Directional couplers with identical input guides a but dif- 

ferent output guides a (directional coupler 1) or b ' 

(directional coupler 2). 

The output powers in the TMo mode of guide a, PTMo , and in 

:he TMo mode of guide b, Pt"", as functions of the coupling 

length 11 without applied voltage, V = 0. 

The output powers in the TM mode of guide a, PTMo, and in 

the TM mode of guide b, Py, as functions of the applied 
voltage V 

The output powers in the TE mode of guide a, PTEo , and in 

TE mode of guide b, PTEo, as functions of the applied 

v = v. voltage V = - 

a 

0 a 

0 - - Vb = V. a 

0 a 

0 b 

b a 
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